题目内容
已知函数
,
(Ⅰ)若
是函数
的一个极值点,求
;
(Ⅱ)讨论函数
的单调区间;
(Ⅲ)若对于任意的
,不等式
在
上恒成立,求
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161812973788.gif)
(Ⅰ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161812989273.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813020270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813036192.gif)
(Ⅱ)讨论函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813020270.gif)
(Ⅲ)若对于任意的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813067422.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813098467.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813114312.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813129204.gif)
(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813160234.gif)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813020270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813207547.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813238424.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813020270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813270536.gif)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813301471.gif)
解:(Ⅰ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813316830.gif)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161812989273.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813020270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813379501.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813410436.gif)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813426250.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813160234.gif)
(Ⅱ)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813020270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813488475.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231618135041217.gif)
(1) 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813535288.gif)
![]() | ![]() | ![]() | ![]() |
![]() | + | - | + |
![]() | 增 | 减 | 增 |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813020270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813582347.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813628552.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813020270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813613534.gif)
(2) 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813800281.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813816767.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813020270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813847502.gif)
(3) 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813862348.gif)
![]() | ![]() | ![]() | ![]() |
![]() | + | - | + |
![]() | 增 | 减 | 增 |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813020270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813207547.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813238424.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813020270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813270536.gif)
(Ⅲ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161814159330.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161814221667.gif)
由(Ⅱ)可知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813020270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813114312.gif)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161814299331.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813020270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813114312.gif)
所以对于对于任意的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813067422.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813020270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161814393512.gif)
要使不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813098467.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813114312.gif)
须
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161814455593.gif)
记
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161814486538.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161814502608.gif)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161814518279.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161814549265.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161814518279.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161814596472.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161814611410.gif)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813129204.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823161813301471.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
题目内容
![]() | ![]() | ![]() | ![]() |
![]() | + | - | + |
![]() | 增 | 减 | 增 |
![]() | ![]() | ![]() | ![]() |
![]() | + | - | + |
![]() | 增 | 减 | 增 |