题目内容

【题目】如图,在四棱锥P-ABCD中, PA=AB=BC=2. EPC的中点.

1)证明:

2)求三棱锥P-ABC的体积;

3 证明:平面

【答案】1)证明见解析;(2;(3)证明见解析.

【解析】

1)证明PA⊥平面ABCD, PACD即得证;(2)直接利用三棱锥的体积公式求解;(3)先证明AE⊥PC, CD⊥AE,平面即得证.

1)因为 平面ABCD,

所以PA⊥平面ABCD, 因为平面ABCD,

所以PACD.

2)因为PA⊥平面ABCD,所以PA是三棱锥P-ABC的高,

所以.

3)因为 AB=BC=2.

所以AC=PA=2,

因为E是PC的中点,

所以AE⊥PC.

因为CD⊥AC,AP⊥CD,平面APC,

所以CD⊥平面PAC,

所以CD⊥AE.

因为平面PCD,

所以AE⊥平面PCD.

练习册系列答案
相关题目

【题目】随着人民生活水平的日益提高,某小区居民拥有私家车的数量与日俱增.由于该小区建成时间较早,没有配套建造地下停车场,小区内无序停放的车辆造成了交通的拥堵.该小区的物业公司统计了近五年小区登记在册的私家车数量(累计值,如124表示2016年小区登记在册的所有车辆数,其余意义相同),得到如下数据:

编号

1

2

3

4

5

年份

2014

2015

2016

2017

2018

数量(单位:辆)

34

95

124

181

216

(1)若私家车的数量与年份编号满足线性相关关系,求关于的线性回归方程,并预测2020年该小区的私家车数量;

(2)小区于2018年底完成了基础设施改造,划设了120个停车位,为解决小区车辆乱停乱放的问题,加强小区管理,物业公司决定禁止无车位的车辆进入小区,由于车位有限,物业公司决定在2019年度采用网络竞拍的方式将车位对业主出租,租期一年,竞拍方案如下:

①截至2018年已登记在册的私家车业主拥有竞拍资格;

②每车至多申请一个车位,由车主在竞拍网站上提出申请并给出自己的报价;

③根据物价部门的规定,竞价不得超过1200元;

④申请阶段截止后,将所有申请的业主报价自高到低排列,排在前120位的业主以其报价成交;

⑤若最后出现并列的报价,则以提出申请的时间在前的业主成交,为预测本:次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的40位业主进行竞拍意向的调查,统计了他们的拟报竞价,得到如下频率分布直方图:

(ⅰ)求所抽取的业主中有意向竞拍报价不低于1000元的人数;

(ⅱ)如果所有符合条件的车主均参与竞拍,利用样木估计总体的思想,请你据此预测至少需要报价多少元才能竞拍车位成功?(精确到整数)

参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网