题目内容

9.若x,y>0,且x+2y=1,则(x+$\frac{1}{x}$)(y+$\frac{1}{4y}$)的最小值是(  )
A.$\frac{25}{2}$B.$\frac{25}{4}$C.$\frac{25}{8}$D.$\frac{25}{16}$

分析 根据基本不等式的性质即可求出最小值.

解答 解:(x+$\frac{1}{x}$)(y+$\frac{1}{4y}$)=xy+$\frac{x}{4y}$+$\frac{y}{x}$+$\frac{1}{4xy}$≥xy+$\frac{1}{4xy}$+2$\sqrt{\frac{x}{4y}•\frac{y}{x}}$=xy+$\frac{1}{4xy}$+1当且仅当x=2y时,即$\left\{\begin{array}{l}{x+2y=1}\\{x=2y}\end{array}\right.$,即x=$\frac{1}{2}$,y=$\frac{1}{4}$取等号,
∵1=x+2y≥2$\sqrt{2xy}$,
∴0<xy≤$\frac{1}{8}$,
设xy=t,则0<t≤$\frac{1}{8}$,
令f(t)=t+$\frac{1}{4t}$+1,
f′(t)=1-$\frac{1}{4{t}^{2}}$<0,在(0,$\frac{1}{8}$],
则函数f(t)在(0,$\frac{1}{8}$]为减函数,
∴f(t)min=f($\frac{1}{8}$)=$\frac{1}{8}$+2+1=$\frac{25}{8}$,
故(x+$\frac{1}{x}$)(y+$\frac{1}{4y}$)的最小值是$\frac{25}{8}$.
故选:C.

点评 本题考查利用基本不等式、函数的单调性求最值问题,以及换元法的应用,考查化简、变形能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网