题目内容
【题目】(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)若存在实数x使|x﹣a|+|x﹣1|≤3成立,则实数a的取值范围是 .
B.(几何证明选做题)如图,在圆O中,直径AB与弦CD垂直,垂足为E,EF⊥DB,垂足为F,若AB=6,AE=1,则DFDB= .
C.(坐标系与参数方程)直线2ρcosθ=1与圆ρ=2cosθ相交的弦长为 .
【答案】﹣2≤a≤4;5;
【解析】解:A.∵存在实数x使|x﹣a|+|x﹣1|≤3成立,
而|x﹣a|+|x﹣1|表示数轴上的x到a的距离加上它到1的距离,
又最大值等于3,由图可得:当表示a的点位于AB之间时满足|x﹣a|+|x﹣1|≤3,
∴﹣2≤a≤4,
所以答案是:﹣2≤a≤4.
B;∵AB=6,AE=1,由题意可得△AEC∽△DEB,DE=CE,
∴DECE=AEEB=1×5=5,即DE= .
在Rt△EDB中,由射影定理得:DE2=DFDB=5.
所以答案是:5.
C;∵2ρcosθ=1,
∴2x=1,即x= ;
又圆ρ=2cosθ的普通方程由ρ2=2ρcosθ得:x2+y2=2x,
∴(x﹣1)2+y2=1,
∴圆心(1,0)到直线x= 的距离为 ,
∴相交弦长的一半为 = ,
∴相交弦长为 .
所以答案是: .
【考点精析】根据题目的已知条件,利用绝对值不等式的解法的相关知识可以得到问题的答案,需要掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.
练习册系列答案
相关题目