题目内容
【题目】如图,四棱锥中,平面平面,若,四边形是平行四边形,且.
(Ⅰ)求证:;
(Ⅱ)若点在线段上,且平面,,,求二面角的余弦值.
【答案】(Ⅰ)见解析(Ⅱ)
【解析】
(Ⅰ)推导出BC⊥CE,从而EC⊥平面ABCD,进而EC⊥BD,再由BD⊥AE,得BD⊥平面
AEC,从而BD⊥AC,进而四边形ABCD是菱形,由此能证明AB=AD.
(Ⅱ)设AC与BD的交点为G,推导出EC// FG,取BC的中点为O,连结OD,则OD⊥BC,以O为坐标原点,以过点O且与CE平行的直线为x轴,以BC为y轴,OD为z轴,建立
空间直角坐标系,利用向量法能求出二面角A-BF-D的余弦值.
(Ⅰ)证明:,即,
因为平面平面,
所以平面,
所以,
因为,
所以平面,
所以,
因为四边形是平行四边形,
所以四边形是菱形,
故;
解法一:(Ⅱ)设与的交点为,
因为平面,
平面平面于,
所以,
因为是中点,
所以是的中点,
因为,
取的中点为,连接,
则,
因为平面平面,
所以面,
以为坐标原点,以过点且与平行的直线为轴,以所在直线为轴,以所在直线为轴建立空间直角坐标系.不妨设,则,,,,,,,
设平面的法向量,
则,取,
同理可得平面的法向量,
设平面与平面的夹角为,
因为,
所以二面角的余弦值为.
解法二:(Ⅱ)设与的交点为,
因为平面,平面平面于,
所以,
因为是中点,
所以是的中点,
因为,,
所以平面,
所以,
取中点,连接、,
因为,
所以,
故平面,
所以,即是二面角的平面角,
不妨设,
因为,,
在中,,
所以,所以二面角的余弦值为.
练习册系列答案
相关题目