题目内容
设集合S={1,2,3,…,2008},现对S的任一非空子集X,令ax表示X中最大数与最小数之和,那么所有这样的ax的平均数为
2009
2009
.分析:因为对于M的任一非空子集Z={n1,n2,n3,…},可找出它的对称集Z′={2009-n1,2009-n2,2009-n3,…},对称集的最大值与最小值的平均数为2009.
解答:解:对于M的任一非空子集Z={n1,n2,n3,…},可找出它的对称集Z′={2009-n1,2009-n2,2009-n3,…}.
例如:当Z={1,2,4,6},则Z′={2003,2005,2007,2008}
对于M的所有非空子集Z和它的对称集Z′,分成两种情况:
A)Z=Z′
B)Z≠Z′
设Z的最大数与最小数分别为max,min
如果Z=Z′,则max+min=max+(2009-max)=2009
如果Z≠Z′,则Z′的最大数与最小数分别为2009-min,2009-max,
Z与Z′中最大数与最小数之和的算术平均数=[(max+min)+(2009-min+2009-max)]÷2=20019
以上说明对M的所有非空子集分类后,每个类中Z的最大数与最小数之和的算术平均数都等于1001,故所求的算术平均数也是2009
故答案为2009
例如:当Z={1,2,4,6},则Z′={2003,2005,2007,2008}
对于M的所有非空子集Z和它的对称集Z′,分成两种情况:
A)Z=Z′
B)Z≠Z′
设Z的最大数与最小数分别为max,min
如果Z=Z′,则max+min=max+(2009-max)=2009
如果Z≠Z′,则Z′的最大数与最小数分别为2009-min,2009-max,
Z与Z′中最大数与最小数之和的算术平均数=[(max+min)+(2009-min+2009-max)]÷2=20019
以上说明对M的所有非空子集分类后,每个类中Z的最大数与最小数之和的算术平均数都等于1001,故所求的算术平均数也是2009
故答案为2009
点评:解决集合间的包含关系,应该利用集合关系的定义进行解决.
练习册系列答案
相关题目