题目内容
设集合S={1,2,••,9},集合A={a1,a2,a3}是S的子集,且满足a1<a2<a3,a3-a2≤6,那么满足条件的子集的个数为( )
分析:从集合S中任选3个元素组成集合A,一个能组成C93个,再把不符合条件的去掉,就得到满足条件的集合A的个数.
解答:解:从集合S中任选3个元素组成集合A,一个能组成C93个,
其中A={1,2,9}不合条件,其它的都符合条件,
所以满足条件的集合A的个数C93-1=83.
故选D.
其中A={1,2,9}不合条件,其它的都符合条件,
所以满足条件的集合A的个数C93-1=83.
故选D.
点评:本题主要考查排列与组合及两个基本原理,组合数公式的应用,元素与集合的关系,解题时要认真审题,仔细思考,认真解答,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目