题目内容

9.已知2ex-8≤3恒成立,求x的值.

分析 直接由不等式恒成立求解指数不等式得答案.

解答 解:由2ex-8≤3恒成立,得${e}^{x-8}≤\frac{3}{2}$恒成立,
即$x-8≤ln\frac{3}{2}$,∴x$≤8+ln\frac{3}{2}$.
∴使2ex-8≤3恒成立的x的取值范围是(-∞,8+$ln\frac{3}{2}$].

点评 本题考查函数恒成立问题,考查了指数不等式的解法,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网