题目内容
【题目】某科研机构为了研究喝酒与糖尿病是否有关,现对该市30名男性成人进行了问卷调查,并得到了如下列联表,规定“平均每天喝100ml以上的”为常喝.已知在所有的30人中随机抽取1人,是糖尿病的概率为.
常喝 | 不常喝 | 合计 | |
有糖尿病 | 2 | ||
无糖尿病 | 18 | ||
合计 | 30 |
(1)请将上表补充完整;
(2)是否有的把握认为糖尿病与喝酒有关?请说明理由.
(3)已知常喝酒且有糖尿病的人中恰有两名女性,现从常喝酒且有糖尿病的人中随机抽取2人,求恰好抽到一名男性和一名女性的概率.
参考公式:
参考数据:
k |
【答案】(1)见详解;(2)有的把握认为糖尿病与喝酒有关;(3)
【解析】
(1)由所有的30人中随机抽取1人,是糖尿病的概率为,可得出糖尿病人有8人,据此完善整个列联表;
(2)计算观测值,对照数表得出结论;
(3)用列举法,求出基本事件的个数,从而求出正好抽到一男一女的概率.
解:(1)所有的30人中随机抽取1人,是糖尿病的概率为,
30人中,有糖尿病的有人
常喝 | 不常喝 | 合计 | |
有糖尿病 | 6 | 2 | 8 |
无糖尿病 | 4 | 18 | 22 |
合计 | 10 | 20 | 30 |
(2)由列联表的数据可求得:
故有的把握认为糖尿病与喝酒有关;
(3)设常喝酒且有糖尿病的男性为A、B、C、D,女性为a,b,
则任取两人有:AB,AC,AD,Aa,Ab,BC,BD,Ba,Bb,CD,
Ca,Cb,Da,Db,ab,共15种,
其中一男一女有:Aa,Ab,
故抽到一男一女的概率是.
【题目】近期,某超市针对一款饮料推出刷脸支付活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用刷脸支付.该超市统计了活动刚推出一周内每一天使用刷脸支付的人次,用表示活动推出的天数,表示每天使用刷脸支付的人次,统计数据如下表所示:
(1)在推广期内,与(均为大于零的常数)哪一个适宜作为刷脸支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表中的数据,求关于的回归方程,并预测活动推出第天使用刷脸支付的人次;
(3)已知一瓶该饮料的售价为元,顾客的支付方式有三种:现金支付、扫码支付和刷脸支付,其中有使用现金支付,使用现金支付的顾客无优惠;有使用扫码支付,使用扫码支付享受折优惠;有使用刷脸支付,根据统计结果得知,使用刷脸支付的顾客,享受折优惠的概率为,享受折优惠的概率为,享受折优惠的概率为.根据所给数据估计购买一瓶该饮料的平均花费.
参考数据:其中,
参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:.
【题目】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:
未使用节水龙头50天的日用水量频数分布表
日用 水量 | |||||||
频数 | 1 | 3 | 2 | 4 | 9 | 26 | 5 |
使用了节水龙头50天的日用水量频数分布表
日用 水量 | ||||||
频数 | 1 | 5 | 13 | 10 | 16 | 5 |
(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:
(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)