题目内容
【题目】某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出1盒该产品获利润30元,未售出的产品,每盒亏损10元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了160盒该产品,以(单位:盒, )表示这个开学季内的市场需求量, (单位:元)表示这个开学季内经销该产品的利润.
(1)根据直方图估计这个开学季内市场需求量的平均数;
(2)将表示为的函数;
(3)根据直方图估计利润不少于4000元的概率.
【答案】(1)153;(2) ;(3)0.7.
【解析】试题分析:(1)根据分布图先算出各频率,然后再计算求出平均数(2)分类讨论当时及当时两种情况,分别写出解析式(3)代入求解结果即可
解析:(1)需求量为的频率,
需求量为的频率,
需求量为的频率,
需求量为的频率,
需求量为的频率.
则平均数.
(2)因为每售出1盒该产品获利润30元,未售出的产品,每盒亏损10元,
所以当时, ,
当时, ,所以
(3)因为利润不少于4000元,解得,解得.
所以由(1)知利润不少于4000元的概率.
【题目】在高中学习过程中,同学们常这样说:“如果你的物理成绩好,那么你的数学学习就不会有什么大问题.”某班针对“高中物理学习对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系,如表为该班随机抽取6名学生在一次考试中的物理和数学成绩:
学生编号 学科 | 1 | 2 | 3 | 4 | 5 | 6 |
物理成绩(x) | 75 | 65 | 75 | 65 | 60 | 80 |
数学成绩(y) | 125 | 117 | 110 | 103 | 95 | 110 |
(1)求数学成绩y对物理成绩x的线性回归方程;
(2)该班某同学的物理成绩100分,预测他的数学成绩.
参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:
,
参考数据:752+652+752+652+602+802=29700,
75×125+65×117+75×110+65×103+60×95+80×110=46425.
【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数(个) | ||||
加工的时间(小时) |
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出关于的线性回归方程.
(3)试预测加工个零件需要多少时间?
附录:参考公式: ,.