题目内容
(本小题满分12分)在△ABC中,角A、B、C对应的边分别为、b、c,且,(Ⅰ)求cosB的值;(Ⅱ)若且,求和c的值。
(Ⅰ)(Ⅱ)故和的值均为
解析
(本小题满分14分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,D,E分别为AB,CD的中点,AE的延长线交CB于F。现将△ACD沿CD折起, 折成二面角A—CD—B,连接AF。(I)求证:平面AEF⊥平面CBD;(II)当AC⊥BD时,求二面角A—CD—B大小的余弦值
(本题满分14分)在锐角△ABC中,cos B+cos (A-C)=sin C. (Ⅰ) 求角A的大小;(Ⅱ) 当BC=2时,求△ABC面积的最大值.
(12分)如图,货轮每小时海里的速度向正东方航行,快艇按固定方向匀速直线航行,当货轮位于A1处时,快艇位于货轮的东偏南105°方向的B1处,此时两船相距30海里,当货轮航行30分钟到达A2处时,快艇航行到货轮的东偏南45°方向的B2处,此时两船相距海里。问快艇每小时航行多少海里?
(本题满分13分) 甲船在A处观察到乙船在它的北偏东方向的B处,两船相距a 海里,乙船正向北行驶,若甲船速度是乙船速度的倍,问甲船应取什么方向前进才能在最短时间内追上乙船,此时乙船行驶多少海里?
已知、、分别是的三个内角、、所对的边;(1)若面积求、的值;(2)若,且,试判断的形状.
(本小题满分12分)设函数f(x)=2在处取最小值.(1)求的值;(2)在中, 分别是角A,B,C的对边,已知,求角C.
(本题12分)在中,A.B.C的对边分别为,,。且,(1)求的值(2)若,,求和C
(本小题10分)在中, 分别是的对边,已知是方程的两个根,且.求的度数和的长度.