题目内容

已知二次函数f(x)=ax2+bx+c,(a<0)不等式f(x)>-2x的解集为(1,3).
(1)若方程f(x)+6a=0有两个相等的实根,求f(x)的解析式;
(2)若f(x)的最大值为正数,求实数a的取值范围.
(1)∵不等式f(x)>-2x的解集为(1,3),
∴x=1和x=3是方程ax2+(b+2)x+c=0(a<0)的两根,
∴,∴b=-4a-2,c=3a,
又方程f(x)+6a=0有两个相等的实根.
∴Δ=b2-4a(c+6a)=0,∴4(2a+1)2-4a×9a=0.
∴(5a+1)(1-a)=0,∴a=-或a=1(舍).
∴a=-,b=-,c=-,
∴f(x)=-x2-x-.
(2)由(1)知f(x)=ax2-2(2a+1)x+3a
=a2-+3a
=a2
∵a<0,
∴f(x)的最大值为,
∵f(x)的最大值为正数.

∴解得a<-2-或-2+<a<0.
∴所求实数a的取值范围是∪(-2+,0).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网