题目内容
【题目】选修4-5:不等式选讲
已知函数.
(1)求不等式的解集;
(2)若对恒成立,求的取值范围.
【答案】(1)(2)
【解析】试题分析:(1)由已知,根据解析式中绝对值的零点(即绝对值等于零时的值),将函数的定义域分成若干段,从而去掉绝对值号,再分别计算各段函数的相应不等式的解集,从而求出原不等式的解集;
(2)由题意,将不等式转化为,可构造新函数,则问题再转化为,由(1)可得,即,从而问题可得解.
试题解析:(1)因为,
所以当时,由得;
当时,由得;
当时,由得.
综上,的解集为.
(2)(方法一)由得,
因为,当且仅当取等号,
所以当时,取得最小值5,
所以当时,取得最小值5,
故,即的取值范围为.
(方法二)设,则,
当时,取得最小值5,
所以当时,取得最小值5,
故,即的取值范围为.
练习册系列答案
相关题目