题目内容
(11分)为了调查某厂2000名工人生产某种产品的能力,随机抽查了位工人某天生产该产品的数量,产品数量的分组区间为,,,,,频率分布直方图如图所示.已知生产的产品数量在之间的工人有6位.
(Ⅰ)求;
(Ⅱ)工厂规定从生产低于20件产品的工人中随机的选取2位工人进行培训,则这2位工人不在同一组的概率是多少?
(Ⅰ)m=20(位)。(Ⅱ)选取这2人不在同组的概率为。
解析试题分析:(Ⅰ)根据直方图可知产品件数在[20,25)内的人数为m×5×0.06=6, ……2分
则m=20(位)。 ……4分
(Ⅱ)根据直方图可知产品件数在[10,15),[15,20),组内的人数分别为2,4.设六人分别为x,y,a,b,c,d ……5分
Ω={(x,y),(x,a),(x,b),(x,c),(x,d),(y,a),(y,b),(y,c),(y,d),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)}共15个基本事件 ……8分
设这2位工人不在同一组为A事件,其中包含(x,a),(x,b),(x,c),(x,d),(y,a),(y,b),(y,c),(y,d),
共8个, ……9分
则P(A)= ……11分
答:选取这2人不在同组的概率为。
考点:本题主要考查古典概型的概率计算,直方图。
点评:综合题,古典概型概率的计算,关键是明确基本事件总数及导致事件发生的基本事件数,直方图中小矩形面积=(频率/组距)×组距。
为了解目前老年人居家养老还是在敬老院养老的意向,共调查了50名老年人,其中男性明确表示去敬老院养老的有5人,女性明确表示居家养老的有10人,已知在全部50人中随机地抽取1人明确表示居家养老的概率为。
(1)请根据上述数据建立一个2×2列联表;
(2)居家养老是否与性别有关?请说明理由。
参考公式:
参考数据:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
一次考试中,五名学生的数学、物理成绩如下表所示:
学生 | A1 | A2 | A3 | A4 | A5 |
数学(x分 | 89 | 91 | 93 | 95 | 97 |
物理(y分) | 87 | 89 | 89 | 92 | 93 |
(1)请在图的直角坐标系中作出这些数据的散点图,并求出这些数据的同归方程;
(2)要从4名数学成绩在90分以上的同学中选2人参加一项活动,以X表示选中的同学的物理成绩高于90分的人数,求随机变量X的分布列及数学期望E(X)的值.
(12分)在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动。
(1)根据以上数据建立一个2×2的列联表;
(2)判断性别与休闲方式是否有关系。
附:;
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(本小题满分12分)一个容量为M的样本数据,其频率分布表如下.
(Ⅰ)表中a= ,b = ;
(Ⅱ)画出频率分布直方图;
(Ⅲ)用频率分布直方图,求出总体的众数及平均数的估计值.
频率分布表
分组 | 频数 | 频率 | 频率/组距 |
(10,20] | 2 | 0.10 | 0.010 |
(20,30] | 3 | 0.15 | 0.015 |
(30,40] | 4 | 0.20 | 0.020 |
(40,50] | a | b | 0.025 |
(50,60] | 4 | 0.20 | 0.020 |
(60, 70] | 2 | 0.10 | 0.010 |
频率分布直方图