题目内容

【题目】在正方体ABCD﹣A1B1C1D1中,E,F分别为棱AB,BB1的中点,则直线BC1与EF所成角的余弦值是(
A.
B.
C.
D.

【答案】B
【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系, 设正方体ABCD﹣A1B1C1D1中棱长为2,
则E(2,1,0),F(2,2,1),B(2,2,0),C1(0,2,2),
=(﹣2,0,2), =(0,1,1),
设直线BC1与EF所成角为θ,
则cosθ=|cos< >|= = =
∴直线BC1与EF所成角的余弦值是
故选:B.

【考点精析】利用异面直线及其所成的角对题目进行判断即可得到答案,需要熟知异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网