题目内容
【题目】已知椭圆的离心率为,点在椭圆上.
(1)求椭圆的方程;
(2)经过椭圆的右焦点的直线与椭圆交于、两点,、分别为椭圆的左、右顶点,记与的面积分别为和,求的取值范围.
【答案】(1);(2).
【解析】试题分析: (1)由离心率的值以及点P坐标求出椭圆方程;(2) 当直线无斜率时,直线方程为,不合题意; 当直线斜率存在(显然)时,设直线方程为,设,联立直线和椭圆方程,消去y得出关于x的一元二次方程,将韦达定理代入,再根据基本不等式求出最值.
试题解析:(1)因为,过点, 所以 . 所以椭圆方程为
(2)当直线无斜率时,直线方程为,
此时, 面积相等,
当直线斜率存在(显然)时,设直线方程为,
设
和椭圆方程联立得到,消掉得
显然,方程有根,且
此时=
因为,上式,(时等号成立)
所以的最大值为
【题目】据中国日报网报道:2017年11月13日,TOP500发布的最新一期全球超级计算机500强榜单显示,中国超算在前五名中占据两席,其中超算全球第一“神威太湖之光”完全使用了国产品牌处理器。为了了解国产品牌处理器打开文件的速度,某调查公司对两种国产品牌处理器进行了12次测试,结果如下(数值越小,速度越快,单位是MIPS)
测试1 | 测试2 | 测试3 | 测试4 | 测试5 | 测试6 | 测试7 | 测试8 | 测试9 | 测试10 | 测试11 | 测试12 | |
品牌A | 3 | 6 | 9 | 10 | 4 | 1 | 12 | 17 | 4 | 6 | 6 | 14 |
品牌B | 2 | 8 | 5 | 4 | 2 | 5 | 8 | 15 | 5 | 12 | 10 | 21 |
设分别表示第次测试中品牌A和品牌B的测试结果,记
(Ⅰ)求数据的众数;
(Ⅱ)从满足的测试中随机抽取两次,求品牌A的测试结果恰好有一次大于品牌B的测试结果的概率;
(Ⅲ)经过了解,前6次测试是打开含有文字和表格的文件,后6次测试是打开含有文字和图片的文件.请你依据表中数据,运用所学的统计知识,对这两种国产品牌处理器打开文件的速度进行评价.