题目内容
已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,(x∈[-1,4])为[-1,4]上的“k阶收缩函数”,则k的取值范围是 .
【答案】分析:根据函数f(x)=x2在x∈[-1,4]上的值域,先写出f1(x)、f2(x)的解析式,再由f2(x)-f1(x)≤k(x-a)求出k的范围得到答案.
解答:解:,
当x∈[-1,0]时,1-x2≤k(x+1),∴k≥1-x,k≥2;
当x∈(0,1)时,1≤k(x+1),∴,∴k≥1;
当x∈[1,4]时,x2≤k(x+1),
∴,
∴.
综上所述,∴
故答案为:.
点评:本题主要考查学生的对新问题的接受、分析和解决的能力.要求学生要有很扎实的基本功才能作对这类问题.
解答:解:,
当x∈[-1,0]时,1-x2≤k(x+1),∴k≥1-x,k≥2;
当x∈(0,1)时,1≤k(x+1),∴,∴k≥1;
当x∈[1,4]时,x2≤k(x+1),
∴,
∴.
综上所述,∴
故答案为:.
点评:本题主要考查学生的对新问题的接受、分析和解决的能力.要求学生要有很扎实的基本功才能作对这类问题.
练习册系列答案
相关题目
已知函数f(x)的图象关于直线x=2对称,且当x≠2时其导函数f′(x)满足xf′(x)>2f′(x),若2<a<4,则下列表示大小关系的式子正确的是( )
A、f(2a)<f(3)<f(log2a) | B、f(3)<f(log2a)<f(2a) | C、f(log2a)<f(3)<f(2a) | D、f(log2a)<f(2a)<f(3) |