题目内容

如图所示,O是线段AB的中点,|AB|=2c,以点A为圆心,2a为半径作一圆,其中

(1)若圆A外的动点P到B的距离等于它到圆周的最短距离,建立适当坐标系,求动点P的轨迹方程,并说明轨迹是何种曲线;
(2)经过点O的直线l与直线AB成60°角,当c=2,a=1时,动点P的轨迹记为E,设过点B的直线m交曲线E于M、N两点,且点M在直线AB的上方,求点M到直线l的距离d的取值范围。
轨迹方程为:
(2)
(1)以直线AB为x轴,线段AB的垂直平分线为y轴建立直角坐标系,则A(-c,0),B(c,0)
依题意:
∴点P的轨迹为以A、B为焦点,实半轴为a,虚半轴为的双曲线右支
∴轨迹方程为:
(2)法一:设M(),N(
依题意知曲线E的方程为
,l的方程为
设直线m的方程为
由方程组,消去y得
                   ①

∵直线与双曲线右支交于不同的两点
,从而
由①得
解得
当x=2时,直线m垂直于x轴,符合条件,∴
又设M到l的距离为d,则



由于函数均为区间的增函数
单调递减
的最大值=
又∵
而M的横坐标,∴
法二:为一条渐近线
①m位于时,m在无穷远,此时
②m位于时,,d较大

点M 

故 
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网