题目内容

设F1、F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=
9
4
ab,则该双曲线的离心率为
 
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:由双曲线的定义可得,||PF1|-|PF2||=2a,两边平方,再由条件,即可得到a,b的关系,再由双曲线的a,b,c的关系式,结合离心率公式,即可求得.
解答: 解:由双曲线的定义可得,
||PF1|-|PF2||=2a,
由|PF1|+|PF2|=3b,|PF1|•|PF2|=
9
4
ab,
则有(|PF1|+|PF2|)2-4|PF1|•|PF2|=9b2-9ab=4a2
即有(3b-4a)(3b+a)=0,
即有3b=4a,即9b2=16a2=9(c2-a2),
则9c2=25a2,即有3c=5a,则e=
c
a
=
5
3

故答案为:
5
3
点评:本题考查双曲线的定义和性质:离心率,考查运算能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网