题目内容
(本题14分)向量
,设函数
.
(1)求
的最小正周期与单调递减区间;
(2)在
中,
分别是角
的对边,若
的面积
为
,求a的值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232333085431274.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308559671.png)
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308590447.png)
(2)在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308605544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308621446.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308637512.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308668933.png)
为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308683453.png)
(1)
,
的单调递减区间为
,k∈Z;
(2)
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308715655.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308730473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308761852.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308777468.png)
(1)先根据数量积的坐标表示可得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308793705.png)
,再根据三角恒等变换公式可得
,所以
,再由正弦函数的单调递减区间求出f(x)的递减区间.
(2)由f(A)=4可得求出A,然后根据面积公式
求出c值.在三角形ABC中,已知b,c及A,显然再利用余弦定理求a即可.
(1)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308793705.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308808898.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308964820.png)
……4分
………5分
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232333091511184.png)
的单调递减区间为
,k∈Z………………………………7分
(2)由
得
…………8分
又
为
的内角,
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233309354774.png)
…10分
,
,
……………………………12分
,
…………………14分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308793705.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308808898.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232333088391100.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308855417.png)
(2)由f(A)=4可得求出A,然后根据面积公式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308871798.png)
(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232333089021418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308793705.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308808898.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308964820.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308995957.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308715655.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232333091361336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232333091511184.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308730473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308761852.png)
(2)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233309214532.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232333092451193.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233309261951.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233309292335.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308605544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233309323936.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233309354774.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233309370559.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233309401933.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233309417901.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233309432383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232333094631540.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233308777468.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目