题目内容
(本小题满分12分)
右图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
)的部分图象.
(1)求函数f(x)的解析式;
(2)若f
=
,0<α<
,求cosα的值.![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232330480182964.jpg)
右图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233047924421.png)
(1)求函数f(x)的解析式;
(2)若f
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233047956495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233047971346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233047987413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232330480182964.jpg)
(1) f(x)=sin
.
(2) cosα=[(α+
)-
]=cos
cos
+sin
sin
=
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048049691.png)
(2) cosα=[(α+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048080420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048080420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048127630.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048080420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048127630.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048080420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048205616.png)
(I)观察图象可得函数的最值为1,且函数先出现最大值可得A=1;函数的周期T=π,结合周期公式
可求ω;由函数的图象过
代入可得φ.
(II)由(I)可得
,从而由
,代入整理可得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048330883.png)
,结合已知
,可得利用
代入求值即可.
(1)由图象知A=1 .………………1分
f(x)的最小正周期T=4×
=π,故ω=
=2.……3分
将点
代入f(x)的解析式得sin
=1,
∴
,即
,
又|φ|<
,∴φ=
.………………………………5分
故函数f(x)的解析式为f(x)=sin
.…………………6分
(2)由f
=
,得sin
=
,由0<α<
,得
<α+
<
,
∴cos
=
=
.………………………9分
∴cosα=[(α+
)-
]=cos
cos
+sin
sin
=
.………12分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048236614.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048252584.png)
(II)由(I)可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048283986.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048314711.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048330883.png)
,结合已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048346642.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232330483612151.png)
(1)由图象知A=1 .………………1分
f(x)的最小正周期T=4×
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048548716.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048564504.png)
将点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048252584.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048611640.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232330486261035.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048642931.png)
又|φ|<
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233047924421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048080420.png)
故函数f(x)的解析式为f(x)=sin
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048049691.png)
(2)由f
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048751496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233047971346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048127630.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233047971346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233047987413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048080420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048080420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233047924421.png)
∴cos
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048127630.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233049016941.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233049032369.png)
∴cosα=[(α+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048080420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048080420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048127630.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048080420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048127630.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048080420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233048205616.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目