题目内容
(2011•浙江)已知椭圆C1:=1(a>b>0)与双曲线C2:x2﹣=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点.若C1恰好将线段AB三等分,则( )
A.a2= | B.a2=3 | C.b2= | D.b2=2 |
C
由题意,C2的焦点为(±,0),一条渐近线方程为y=2x,根据对称性易知AB为圆的直径且AB=2a
∴C1的半焦距c=,于是得a2﹣b2=5 ①
设C1与y=2x在第一象限的交点的坐标为(x,2x),代入C1的方程得:②,
由对称性知直线y=2x被C1截得的弦长=2x,
由题得:2x=,所以 ③
由②③得a2=11b2 ④
由①④得a2=5.5,b2=0.5
故选C
∴C1的半焦距c=,于是得a2﹣b2=5 ①
设C1与y=2x在第一象限的交点的坐标为(x,2x),代入C1的方程得:②,
由对称性知直线y=2x被C1截得的弦长=2x,
由题得:2x=,所以 ③
由②③得a2=11b2 ④
由①④得a2=5.5,b2=0.5
故选C
练习册系列答案
相关题目