题目内容
如图,三棱锥P-ABC中,PA⊥底面ABC,△ABC为等边三角形,D,E分别是BC,CA的中点.(1)证明:平面PBE⊥平面PAC;
(2)如何在BC上找一点F,使AD∥平面PEF并说明理由;
(3)若PA=AB=2,对于(Ⅱ)中的点F,求三棱锥P-BEF的体积.
分析:(1)证明平面PBE内的直线BE,垂直平面PAC内的两条相交直线PA、CA,即可证明平面PBE⊥平面PAC;
(2)取CD的中点F,连接EF,证明AD平行平面PEF内的直线EF,即可证明结论;
(3)PA=AB=2,利用VP-BEF=
PA•S△BEF求三棱锥P-BEF的体积.
(2)取CD的中点F,连接EF,证明AD平行平面PEF内的直线EF,即可证明结论;
(3)PA=AB=2,利用VP-BEF=
1 |
3 |
解答:(Ⅰ)证明:∵PA⊥底面ABC,BE?底面ABC,
∴PA⊥BE.(1分)
又∵△ABC是正三角形,且E为AC的中点,
∴BE⊥CA.(2分)
又PA∩CA=A,
∴BE⊥平面PAC.(4分)
∵BE?平面PBE,
∴平面PBE⊥平面PAC.(6分)
(Ⅱ)解:取CD的中点F,连接EF,则F即为所求.(7分)
∵E,F分别为CA,CD的中点,
∴EF∥AD.(8分)
又EF?平面PEF,AD?平面PEF,
∴AD∥平面PEF.(10分)
(Ⅲ)解,根据题意可得
VP-BEF=
PA•S△BEF=
•2•
•
•
=
.(14分)
∴PA⊥BE.(1分)
又∵△ABC是正三角形,且E为AC的中点,
∴BE⊥CA.(2分)
又PA∩CA=A,
∴BE⊥平面PAC.(4分)
∵BE?平面PBE,
∴平面PBE⊥平面PAC.(6分)
(Ⅱ)解:取CD的中点F,连接EF,则F即为所求.(7分)
∵E,F分别为CA,CD的中点,
∴EF∥AD.(8分)
又EF?平面PEF,AD?平面PEF,
∴AD∥平面PEF.(10分)
(Ⅲ)解,根据题意可得
VP-BEF=
1 |
3 |
1 |
3 |
1 |
2 |
3 |
2 |
| ||
2 |
| ||
4 |
点评:本题考查平面与平面垂直的判定,直线与平面平行的判定,棱锥的体积,考查空间想象能力,逻辑思维能力,是中档题.
练习册系列答案
相关题目