题目内容

20.已知数列{an}的前n项和为Tn,且点(n,Tn)在函数y=$\frac{3}{2}{x^2}-\frac{1}{2}$x上,且an+2+3log4bn=0(n∈N*
(1)求{bn}的通项公式;
(2)数列{cn}满足cn=an•bn,求数列{cn}的前n项和Sn
(3)记数列$\left\{{\frac{1}{b_n}}\right\}$的前n项和为Bn,设dn=$\frac{1}{{{b_n}•{B_n}^2}}$,证明:d1+d2+…+dn<$\frac{1}{2}$.

分析 (1)由点(n,Tn)在函数y=$\frac{3}{2}{x^2}-\frac{1}{2}$x上,得:${T_n}=\frac{3}{2}{n^2}-\frac{1}{2}n$,求出{an}的通项公式,再由an+2+3log4bn=0即可求出{bn}的通项公式;
(2)由${c_n}={a_n}•{b_n}=(3n-2){(\frac{1}{4})^n}$且sn=c1+c2+c3+…+cn,求出①,②由数列的裂项相减法,即可求出数列{cn}的前n项和Sn
(3)由$\frac{1}{b_n}={4^n}$,求出数列$\left\{{\frac{1}{b_n}}\right\}$的前n项和为${B_n}=\frac{{4(1-{4^n})}}{1-4}=\frac{4}{3}({4^n}-1)$,又dn=$\frac{1}{{{b_n}•{B_n}^2}}$,然后利用不等式的放缩法求解,即可证明所求结论.

解答 (1)解:由点(n,Tn)在函数y=$\frac{3}{2}{x^2}-\frac{1}{2}$x上,得:${T_n}=\frac{3}{2}{n^2}-\frac{1}{2}n$,
(ⅰ)当n=1时,${a}_{1}={T}_{1}=\frac{3}{2}-\frac{1}{2}=1$.
(ⅱ)当n≥2时,an=Tn-Tn-1=3n-2,
∴an=3n-2.
又∵an+2+3log4bn=0,
∴${b_n}={4^{-n}}=\frac{1}{4^n}$;
( 2)解:∵${c_n}={a_n}•{b_n}=(3n-2){(\frac{1}{4})^n}$且sn=c1+c2+c3+…+cn
∴${S_n}=1×\frac{1}{4}+4×{(\frac{1}{4})^2}+7×{(\frac{1}{4})^3}+…+(3n-2){(\frac{1}{4})^n}$…①$\frac{1}{4}{S_n}=0+1×{(\frac{1}{4})^2}+4×{(\frac{1}{4})^3}+…+(3n-5)×{(\frac{1}{4})^n}+(3n-2){(\frac{1}{4})^{n+1}}$…②
由①-②得:$\frac{3}{4}{S_n}=\frac{1}{4}+3[{(\frac{1}{4})^2}+{(\frac{1}{4})^3}+…+{(\frac{1}{4})^n}]-(3n-2){(\frac{1}{4})^{n+1}}$,$\frac{3}{4}{S_n}=\frac{1}{4}+3\frac{{\frac{1}{16}(1-\frac{1}{{{4^{n-1}}}})}}{{1-\frac{1}{4}}}-(3n-2){(\frac{1}{4})^{n+1}}$,
整理得:${S_n}=\frac{2}{3}-\frac{3n+2}{3}{(\frac{1}{4})^n}$;
(3)证明:∵$\frac{1}{b_n}={4^n}$,
∴数列$\left\{{\frac{1}{b_n}}\right\}$的前n项和为${B_n}=\frac{{4(1-{4^n})}}{1-4}=\frac{4}{3}({4^n}-1)$.
∵${d_n}=\frac{1}{{{b_n}•{B_n}^2}}=\frac{1}{{\frac{1}{4^n}×\frac{16}{9}{{({4^n}-1)}^2}}}=\frac{{9×{4^n}}}{{16{{({4^n}-1)}^2}}}$,
∵$\frac{{9×{4^n}}}{{16{{({4^n}-1)}^2}}}<\frac{{9×{4^n}}}{{16({4^n}-1)({4^{n-1}}-1)}}=\frac{3}{4}(\frac{1}{{{4^{n-1}}-1}}-\frac{1}{{{4^n}-1}})(n≥2)$,
∴${d_1}+{d_2}+…+{d_n}<{d_1}+\frac{3}{4}[(\frac{1}{3}-\frac{1}{15})+(\frac{1}{15}-\frac{1}{63})+…+(\frac{1}{{{4^{n-1}}-1}}-\frac{1}{{{4^n}-1}})]$.
即${d_1}+{d_2}+…+{d_n}<\frac{1}{2}-\frac{3}{{4({4^n}-1)}}<\frac{1}{2}$.
当n=1时${d_n}=\frac{1}{4}<\frac{1}{2}$.

点评 本题考查了数列的通项公式,考查了数列的求和,关键是会用数列的裂项相减法,考查了数列与不等式的综合,会用不等式的放缩法求解,考查了学生的计算能力,是难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网