题目内容
已知函数(其中) ,点从左到右依次是函数图象上三点,且.
(1)证明: 函数在上是减函数;
(2)求证:⊿是钝角三角形;
(3)试问,⊿能否是等腰三角形?若能,求⊿面积的最大值;若不能,请说明理由.
(1)证明: 函数在上是减函数;
(2)求证:⊿是钝角三角形;
(3)试问,⊿能否是等腰三角形?若能,求⊿面积的最大值;若不能,请说明理由.
(1)见解析(2) 见解析(3) ⊿不可能为等腰三角形
【错解分析】函数历来是高中数学最重要的内容,不仅适合单独命题,而且可以综合运用于其它内容.函数是中学数学的最重要内容,它既是工具,又是方法和思想
【正解】
(Ⅰ)
所以函数在上是单调减函数.
(Ⅱ) 证明:据题意且x1<x2<x3,
由(Ⅰ)知f (x1)>f (x2)>f (x3), x2=
即⊿是钝角三角形
(Ⅲ)假设⊿为等腰三角形,则只能是
即
即
①而事实上, ②
由于,故(2)式等号不成立.这与式矛盾. 所以⊿不可能为等腰三角形
【点评】函数的综合问题,这类问题涉及的知识点多,与数列、不等式等知识加以综合。主要考察函数的奇偶性、单调性、极值、导数、不等式等基础知识,考查运用导数研究函数性质的方法,以及分类与整合、转化与化归等数学思想方法,考查分析问题和解决问题的能力.
练习册系列答案
相关题目