题目内容
已知f(x)=x2-2x-ln(x+1)2.
(1)求f(x)的单调递增区间;
(2)若函数F(x)=f(x)-x2+3x+a在上只有一个零点,求实数a的取值范围.
(1)(-,-1)和(,+∞)(2)-2ln 2≤a<2ln 3-2或a=2ln 2-1.
【解析】(1)f(x)的定义域为{x|x≠-1}.
∵f(x)=x2-2x-ln(x+1)2,∴f′(x)=2x-2-=,
解得-<x<-1或x>,
∴f(x)的单调递增区间是(-,-1)和(,+∞).
(2)由已知得F(x)=x-ln(x+1)2+a,且x≠-1,∴F′(x)=1-=.
∴当x<-1或x>1时,F′(x)>0;当-1<x<1时,F′(x)<0.
∴当-<x<1时,F′(x)<0,此时,F(x)单调递减;
当1<x<2时,F′(x)>0,此时,F(x)单调递增.
∵F=-+2ln 2+a>a,F(2)=2-2ln 3+a<a,∴F>F(2).
∴F(x)在上只有一个零点?或F(1)=0.
由得-2ln 2≤a<2ln 3-2;
由F(1)=0得a=2ln 2-1.
∴实数a的取值范围为-2ln 2≤a<2ln 3-2或a=2ln 2-1.
练习册系列答案
相关题目
某农场给某种农作物施肥量x(单位:吨)与其产量y(单位:吨)的统计数据如下表:
施肥量x | 2 | 3 | 4 | 5 |
产量y | 26 | 39 | 49 | 54 |
根据上表,得到回归直线方程=9.4x+,当施肥量x=6时,该农作物的预报产量是________.