题目内容
3.(1)化简 $\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{4{b}^{\frac{2}{3}}+2\root{3}{ab}+{a}^{\frac{2}{3}}}$÷(1-2$\root{3}{\frac{b}{a}}$)×$\root{3}{ab}$.(2)求值:$\frac{lo{g}_{5}\sqrt{2}•lo{g}_{7}9}{lo{g}_{5}\frac{1}{3}•lo{g}_{7}\root{3}{4}}$+log2($\sqrt{3+\sqrt{5}}$-$\sqrt{3-\sqrt{5}}$).
分析 (1)根据指数幂的运算性质和立方差公式即可求出,
(2)根据对数的运算性质即可求出.
解答 解:(1)$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{4{b}^{\frac{2}{3}}+2\root{3}{ab}+{a}^{\frac{2}{3}}}$÷(1-2$\root{3}{\frac{b}{a}}$)×$\root{3}{ab}$=$\frac{{a}^{\frac{1}{3}}(a-8b)}{b{\;}^{\frac{2}{3}}+2\root{3}{ab}+{a}^{\frac{2}{3}}}$•$\frac{{a}^{\frac{1}{3}}}{{a}^{\frac{1}{3}}-2{b}^{\frac{1}{3}}}$•${a}^{\frac{1}{3}}$•${b}^{\frac{1}{3}}$=a•${b}^{\frac{1}{3}}$=a$\root{3}{b}$
(2)$\frac{lo{g}_{5}\sqrt{2}•lo{g}_{7}9}{lo{g}_{5}\frac{1}{3}•lo{g}_{7}\root{3}{4}}$+log2($\sqrt{3+\sqrt{5}}$-$\sqrt{3-\sqrt{5}}$)=$\frac{lg\sqrt{2}}{lg\frac{1}{3}}$•$\frac{lg9}{lg\root{3}{4}}$+$\frac{1}{2}$log2($\sqrt{3+\sqrt{5}}$-$\sqrt{3-\sqrt{5}}$)2=$\frac{\frac{1}{2}lg2•2lg3}{-lg3•\frac{2}{3}lg2}$+$\frac{1}{2}$log22=-$\frac{3}{2}$+1=-$\frac{1}{2}$.
点评 本题考查了指数幂的运算性质和对数的运算性质,关键是运算能力,属于基础题.
A. | (0,$\frac{1}{2}$)∪(1,+∞) | B. | (0,$\frac{1}{2}$)∪(1,2) | C. | (0,$\frac{1}{6}$)∪(1,+∞) | D. | (0,$\frac{1}{6}$)∪(1,6) |