题目内容
【题目】癌症是迄今为止人类尚未攻克的疾病之一,目前,癌症只能尽量预防.某医学中心推出了一种抗癌症的制剂,现对20位癌症病人,进行医学试验测试药效,测试结果分为“病人死亡”和“病人存活”,现对测试结果和药物剂量(单位:)进行统计,规定病人在服用(包括)以上为“足量”,否则为“不足量”,统计结果显示,这20病人
中“病人存活”的有13位,对病人服用的药物剂量统计如下表:
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
吸收量/ | 6 | 8 | 3 | 8 | 9 | 5 | 6 | 6 | 2 | 7 | 7 | 5 | 10 | 6 | 7 | 8 | 8 | 4 | 6 | 9 |
已知“病人存活”,但服用的药物剂量不足的病人共1位.
(1)完成下列列联表,并判断是否可以在犯错误的概率不超过1%的前提下,认为“病人存活”与服用药物的剂量足量有关?
服用药物足量 | 服用药物不足量 | 合计 | |
病人存活 | 1 | ||
病人死亡 | |||
合计 | 20 |
(2)若在该样本“服用药物剂量不足”的病人中随机抽取3位,求这三人中恰有1位“病人存活”的概率.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)列联表见解析,不能;(2)
【解析】
(1)完善列联表,计算得到答案.
(2)设计量不足的5位病人中,死亡人员为,存活人员为,列出所有共10种情况,满足条件的有6种,得到答案.
(1)根据题意:服用的药物剂量有15人,
服用药物足量 | 服用药物不足量 | 合计 | |
病人存活 | 12 | 1 | 13 |
病人死亡 | 3 | 4 | 7 |
合计 | 15 | 5 | 20 |
则,
故不能在犯错误的概率不超过1%的前提下,认为“病人存活”与服用药物的剂量足量有关.
(2)设计量不足的5位病人中,死亡人员为,存活人员为.
则共有,,,,,,,,,,
共10种情况,满足条件的有6种,故.
【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在A,B实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在A,B试验地随机抽选各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为80及以上的花苗为优质花苗.
(1)求图中a的值,并求综合评分的中位数;
(2)用样本估计总体,以频率作为概率,若在A,B两块实验地随机抽取3棵花苗,求所抽取的花苗中的优质花苗数的分布列和数学期望;
(3)填写下面的列联表,并判断是否有90%的把握认为优质花苗与培育方法有关.
优质花苗 | 非优质花苗 | 合计 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合计 |
附:下面的临界值表仅供参考.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中.)
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量(单位:吨)和年利润(单位:万元)的影响.对近六年的年宣传费和年销售量()的数据作了初步统计,得到如下数据:
年份 | ||||||
年宣传费(万元) | ||||||
年销售量(吨) |
经电脑模拟,发现年宣传费(万元)与年销售量(吨)之间近似满足关系式().对上述数据作了初步处理,得到相关的值如表:
(1)根据所给数据,求关于的回归方程;
(2)已知这种产品的年利润与,的关系为若想在年达到年利润最大,请预测年的宣传费用是多少万元?
附:对于一组数据,,…,,其回归直线中的斜率和截距的最小二乘估计分别为,
【题目】某高中为了了解高三学生每天自主参加体育锻炼的情况,随机抽取了100名学生进行调查,其中女生有55名.下面是根据调查结果绘制的学生自主参加体育锻炼时间的频率分布直方图:
将每天自主参加体育锻炼时间不低于40分钟的学生称为体育健康类学生,已知体育健康类学生中有10名女生.
(1)根据已知条件完成下面列联表,并据此资料你是否有的把握认为达到体育健康类学生与性别有关?
非体育健康类学生 | 体育健康类学生 | 合计 | |
男生 | |||
女生 | |||
合计 |
(2)将每天自主参加体育锻炼时间不低于50分钟的学生称为体育健康类学生,已知体育健康类学生中有2名女生,若从体育健康类学生中任意选取2人,求至少有1名女生的概率.
附: