题目内容
【题目】函数的图象与轴交于点,周期是.
(1)求函数解析式,并写出函数图象的对称轴方程和对称中心;
(2)已知点,点是该函数图象上一点,点是的中点,当 , 时,求的值.
【答案】(1)见解析;(2)或.
【解析】试题分析:(1)根据周期是可得的值,再由图象与轴交于点求得的值,从而可得函数解析式,根据余弦函数的性质可求得函数图象的对称轴方程和对称中心;(2)点 是的中点,点,利用中点坐标公式求出的坐标,点是该函数图象上一点,代入函数解析式,化简,根据,求解的值.
试题解析:(1)由题意,周期是π,即.
由图象与y轴交于点(0,),∴,可得,
∵0≤φ≤,
得函数解析式.
由,可得对称轴方程为,(k∈Z)
由,可得对称中心坐标为(,0),(k∈Z)
(2)点Q是PA的中点, A,∴P的坐标为,
由,可得P的坐标为,
又∵点P是该函数图象上一点,
∴,
整理可得:,
∵x0∈,∴,
故或,
解得或.
【题目】据报道,某公司的32名职工的月工资(单位:元)如下:
职务 | 董事长 | 副董事长 | 董事 | 总经理 | 经理 | 管理 | 职员 |
人数 | 1 | 1 | 2 | 1 | 5 | 3 | 20 |
工资 | 5 500 | 5 000 | 3 500 | 3 000 | 2 500 | 2 000 | 1 500 |
(1)求该公司职工工资的平均数、中位数、众数.(精确到1元)
(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数分别是多少?(精确到1元)
(3)你认为哪个统计量更能反映这个公司员工的工资水平?结合此问题谈一谈你的看法.
【题目】随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户,按年龄分组进行访谈,统计结果如表.
组号 | 年龄 | 访谈人数 | 愿意使用 |
1 | [18,28) | 4 | 4 |
2 | [28,38) | 9 | 9 |
3 | [38,48) | 16 | 15 |
4 | [48,58) | 15 | 12 |
5 | [58,68) | 6 | 2 |
(Ⅰ)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取12人,则各组应分别抽取多少人?
(Ⅱ)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.
(Ⅲ)按以上统计数据填写下面2×2列联表,并判断以48岁为分界点,能否在犯错误不超过1%的前提下认为,是否愿意选择此款“流量包”套餐与人的年龄有关?
年龄不低于48岁的人数 | 年龄低于48岁的人数 | 合计 | |
愿意使用的人数 | |||
不愿意使用的人数 | |||
合计 |
参考公式: ,其中:n=a+b+c+d.
P(k2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |