题目内容
(本题满分12分)已知函数, .(Ⅰ)令,求关于的函数关系式,并写出的范围;(Ⅱ)求该函数的值域.
(Ⅰ)(Ⅱ)函数的值域为.
解析
(本大题满分14分)设函数上两点,若,且P点的横坐标为.(1)求P点的纵坐标;(2)若求;(3)记为数列的前n项和,若对一切都成立,试求a的取值范围.
(本小题满分12分) 设, .(1)当时,求曲线在处的切线方程;(2)如果存在,使得成立,求满足上述条件的最大整数;(3)如果对任意的,都有成立,求实数的取值范围.
(本小题满分10分) 判断(x∈[0,3])的单调性,并证明你的结论.
(本题满分12分)已知≤≤1,若函数在区间[1,3]上的最大值为,最小值为,令.(1)求的函数表达式;(2)判断函数在区间[,1]上的单调性,并求出的最小值 .
(本题满分12分)已知定义域为R的函数是奇函数.①求实数的值;②用定义证明:在R上是减函数;③解不等式:.
B(文)设是定义在上的偶函数,当时,222233.(1)若在上为增函数,求的取值范围;(2)是否存在正整数,使的图象的最高点落在直线上?若存在,求出的值;若不存在,请说明理由.
设(1)若且对任意实数均有成立,求的表达式;(2)在(1)条件下,当是单调递增,求实数k的取值范围。
(本题满分12分)设函数的定义域为,当时,,且对任意的实数,有.(Ⅰ)求,判断并证明函数的单调性;(Ⅱ)数列满足,且 ①求通项公式的表达式;②令,试比较的大小,并加以证明.