题目内容
如图,PA⊥平面ABCD,ABCD为正方形,,且PA=AD=2,E、F、G分别是线段PA、PD、CD的中点.
(1)求证:面EFG⊥面PAB;
(2)求异面直线EG与BD所成的角的余弦值;
(3)求点A到面EFG的距离.
(1)求证:面EFG⊥面PAB;
(2)求异面直线EG与BD所成的角的余弦值;
(3)求点A到面EFG的距离.
建立如图所示的空间直角坐标系A-xyz,
则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),
P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0).
(1)证明:∵
=(0,1,0),
=(0,0,2),
=(2,0,0),
∴
•
=0×0+1×0+0×2=0,
•
=0×2+1×0+0×0=0,
∴EF⊥AP,EF⊥AB.
又∵AP、AB?面PAB,且PA∩AB=A,
∴EF⊥平面PAB.
又EF?面EFG,∴平面EFG⊥平面PAB.
(2)∵
=(1,2,-1),
=(-2,2,0),
∴cos<
,
>=
=
=
,
(3)设平面EFC的法向量
=(x,y,z),
则
∴
令z=0,得
=(1,0,1).
又
=(0,0,1),
∴点A到平现EFG的距离d=|
|=|
|=
.
则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),
P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0).
(1)证明:∵
EF |
AP |
AB |
∴
EF |
AP |
EF |
AB |
∴EF⊥AP,EF⊥AB.
又∵AP、AB?面PAB,且PA∩AB=A,
∴EF⊥平面PAB.
又EF?面EFG,∴平面EFG⊥平面PAB.
(2)∵
EG |
BD |
∴cos<
EG |
BD |
| ||||
|
|
-2+4 | ||||
|
| ||
6 |
(3)设平面EFC的法向量
n |
则
|
|
令z=0,得
n |
又
AE |
∴点A到平现EFG的距离d=|
| ||||
|
|
1 | ||
|
| ||
2 |
练习册系列答案
相关题目