题目内容

设平面内两向量
a
b
满足:
a
b
,|
a
|=2,|
b
|=1
,点M(x,y)的坐标满足:x
a
+(y2-4)
b
-x
a
+
b
互相垂直.求证:平面内存在两个定点A、B,使对满足条件的任意一点M均有|||
MA
|-|
MB
||
等于定值.
分析:由已知可得[x
a
+(y2-4)
b
]•(-x
a
+y
b
)=0
,把已知条件代入整理可得M的轨迹是双曲线,由双曲线的定义可知,满足条件的点即为双曲线的两焦点,而定值即为双曲线的实轴长2a
解答:证明:∵
a
b
,∴
a
b
=0

x
a
+(y2-4)
b
-x
a
+y
b
垂直,且|
a
|=2,|
b
|=1

[x
a
+(y2-4)
b
]•[-x
a
+
b
] =0

-x2
a
2
+x
a
b
-x(y2-4)
a
b
+(y2-4)
b
2
=0

整理可得
y2
4
-x2=1

M(x,y)的轨迹是以(0,
5
)(0,-
5
)为焦点的双曲线
由双曲线的定义可知当A,B分别为该双曲线的焦点时,||MA|-|MB||=4
点评:本题以向量垂直为切入点,综合考查双曲线的定义的应用,灵活熟练的推理论证及对基本知识的掌握是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网