题目内容

设平面内两向量a与b互相垂直,且|a|=2,|b|=1,又k与t是两个不同时为零的实数.

(1)若x=a+(t-3)与y=-ka+tb垂直,求k关于t的函数关系式k=f(t);

(2)求函数k=f(t)的最小值.

答案:略
解析:

解:∵xy,∴a·b=0,又xy,∴x·y=0,即[a(t3)b]·(katb)=0

|a|=2|b|=1

(2)(1)知,

即函数的最小值为

由已知条件知xy,即x·y=0,可以得到函数关系式k=f(t),然后利用函数的性质求最值.


提示:

本题体现了向量与二次函数的联系.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网