题目内容
【题目】以平面直角坐标系的原点为极点, 轴正半轴为极轴且取相同的单位长度建立极坐标系.已知点的参数方程为(为参数),点在曲线上.
(1)求在平面直角坐标系中点的轨迹方程和曲线的普通方程;
(2)求的最大值.
【答案】(1),曲线的普通方程为;(2).
【解析】试题分析:(1)消参的普通方程,利用转化公式极坐标化普通方程;(2)数形结合,转化为线段上一点与圆上一点距离的最大值,注意利用垂线段最短及点与圆上点距离最大值的求法.
试题解析:(1)由消去参数,得,
又,∴,
故点的轨迹方程是,
∵,∴,∴,即,
故曲线的普通方程为.
(2)如图:
由题意可得,点的线段上,点在圆上,
∵圆的圆心到直线的距离,
∴直线与圆相切,且切点为,
易知线段上存在一点,
则点与圆心的连线,与圆的交点满足取最大值.
即当点坐标为时, 取最大值.
∵,
∴的最大值为.
练习册系列答案
相关题目
【题目】某品牌连锁便利店有个分店,A,B,C三种商品在各分店均有销售,这三种商品的单价和重量如表1所示:
商品A | 商品B | 商品C | |
单价(元) | 15 | 20 | 30 |
每件重量(千克) | 0.2 | 0.3 | 0.4 |
表1
某日总店向各分店分配的商品A,B,C的数量如表2所示:
商品 分店 | 分店1 | 分店2 | …… | 分店 |
A | 12 | 20 | m1 | |
B | 15 | 20 | m2 | |
C | 20 | 15 | m3 |
表2
表3表示该日分配到各分店去的商品A,B,C的总价和总重量:
分店1 | 分店2 | …… | 分店 | |
总价(元) | ||||
总重量(千克) |
表3
则__________ ; __________ .