题目内容
【题目】已知椭圆的右焦点为,左右顶点分别为,,上顶点为,
(1)求椭圆离心率;
(2)点到直线的距离为,求椭圆方程;
(3)在(2)的条件下,点在椭圆上且异于、两点,直线与直线交于点,说明运动时以为直径的圆与直线的位置关系,并证明.
【答案】(1);(2);(3)相切,证明见解析
【解析】
(1)由已知根据椭圆的定义可得,从而可得即可求解.
(2)利用点斜式求出直线的方程,再利用点到直线的距离公式可得,结合即可求解.
(3)设直线,将直线与椭圆联立,利用韦达定理求出点坐标,再求出圆心,分类讨论或,求出直线的方程, 再利用点到直线的距离与半径作比较即可证出.
(1)由已知,
(2),直线,
即
则点到直线的距离,
解为,,椭圆方程为
(3)以为直径的圆与直线相切,
证明:直线
交点为
得,
,
,,点,中点圆心
当时,点,直线,圆心,半径1,与直线相切;
当时,,
点到直线的距离为半径,得证.
【题目】当今世界科技迅猛发展,信息日新月异.为增强全民科技意识,提高公众科学素养,某市图书馆开展了以“亲近科技、畅想未来”为主题的系列活动,并对不同年龄借阅者对科技类图书的情况进行了调查.该图书馆从只借阅了一本图书的借阅者中随机抽取100名,数据统计如表:
借阅科技类图书(人) | 借阅非科技类图书(人) | |
年龄不超过50岁 | 20 | 25 |
年龄大于50岁 | 10 | 45 |
(1)是否有99%的把握认为年龄与借阅科技类图书有关?
(2)该图书馆为了鼓励市民借阅科技类图书,规定市民每借阅一本科技类图书奖励积分2分,每借阅一本非科技类图书奖励积分1分,积分累计一定数量可以用积分换购自己喜爱的图书.用表中的样本频率作为概率的估计值.
(i)现有3名借阅者每人借阅一本图书,记此3人增加的积分总和为随机变量ξ,求ξ的分布列和数学期望;
(ii)现从只借阅一本图书的借阅者中选取16人,则借阅科技类图书最有可能的人数是多少?
附:K2,其中n=a+b+c+d.
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |