ÌâÄ¿ÄÚÈÝ

ÒÑÖªÊýÁÐ{an}Âú×㣺a1=1£¬an+1=
an
2
+n-1£¬(nΪÆæÊý)
an-2n£¬(nΪżÊý)
¼Çbn=a2n(n¡ÊN*)

£¨1£©ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©Éècn=(22n-1-1)bn2£¬ÊýÁÐ{cn}µÄÇ°nÏîºÍΪ{sn}£¬Èô¶ÔÈÎÒân¡ÊN*£¬²»µÈʽ¦Ë¡Ý1+Snºã³ÉÁ¢£¬ÇóʵÊý¦ËÈ¡Öµ·¶Î§£»
£¨3£©Éèxn=
2n
n
bn
£¬ÊýÁÐ{xn}µÄÇ°nÏîºÍΪTn£¬Èô´æÔÚÕûÊým£¬Ê¹¶ÔÈÎÒân¡ÊN*£¬ÇÒn¡Ý2£¬¶¼ÓÐT3n-Tn£¾
m
20
³ÉÁ¢£¬ÇómµÄ×î´óÖµ£®
·ÖÎö£º£¨1£©ÓÉbn=a2n£¬Öªbn+1=a2n+1+1=
a2n+1
2
+(2n+1)-1=
a2n
2
=
1
2
bn
£¬ÓÉa1=1£¬Öªb1=a2=
1
2
a1=
1
2
£¬ÓÉ´ËÄܵ¼³öÊýÁÐ{bn}µÄͨÏʽ£®
£¨2£©ÓÉcn=(22n-1-1)(
1
2
)n2=(
1
2
)(n-1)2-(
1
2
)n2
£¬ÖªSn=c1+c2++cn=1-(
1
2
)n2
£¬Sn=c1+c2+¡­+cn=1-(
1
2
)
n2
£¬Èô¶ÔÓÚÈÎÒân¡ÊN*£¬²»µÈʽ¦Ë¡Ý1+Snºã³ÉÁ¢£¬ÓÉ´ËÄÜÇó³ö¦ËµÄÈ¡Öµ·¶Î§£®
£¨3£©ÓÉxn=
2n
n
bn=
1
n
£¬ÖªT3n-Tn=
1
n+1
+
1
n+2
++
1
3n
£¬Áîf(n)=
1
n+1
+
1
n+2
++
1
3n
£¬Ôòf(n+1)-f(n)=
1
3n+1
+
1
3n+2
+
1
3n+3
-
1
n+1
£¾
1
3n+3
+
1
3n+3
-
2
3n+3
=0
£¬ËùÒÔf£¨n£©ÊÇÔöº¯Êý£¬ÓÉ´ËÄܵ¼³öÕûÊýmµÄ×î´óֵΪ18£®
½â´ð£º½â£º£¨1£©bn=a2n£¬
bn+1=a2n+1+1=
a2n+1
2
+(2n+1)-1=
a2n
2
=
1
2
bn
£¬
a1=1£¬
¡àb1=a2=
1
2
a1=
1
2
£¬
¡à{bn}ÊÇÊ×ÏîºÍ¹«±È¶¼Îª
1
2
µÄµÈ±ÈÊýÁУ¬
¹Êbn=(
1
2
)n
£¨5·Ö£©
£¨2£©cn=(22n-1-1)(
1
2
)n2=(
1
2
)(n-1)2-(
1
2
)n2
£¬
Sn=c1+c2+¡­+cn=1-(
1
2
)
n2
£¬
Èô¶ÔÓÚÈÎÒân¡ÊN*£¬
²»µÈʽ¦Ë¡Ý1+Snºã³ÉÁ¢£¬
Ôò¦Ë¡Ý2£¬
¹Ê¦ËµÄÈ¡Öµ·¶Î§ÊÇ[2£¬+¡Þ£©£®£¨9·Ö£©
£¨3£©xn=
2n
n
bn=
1
n
£¬
T3n-Tn=
1
n+1
+
1
n+2
+¡­+
1
3n
£¬
Áîf£¨n£©=
1
n+1
+
1
n+2
+¡­+
1
3n
£¬
Ôòf(n+1)-f(n)=
1
3n+1
+
1
3n+2
+
1
3n+3
-
1
n+1

£¾
1
3n+3
+
1
3n+3
-
2
3n+3
=0
£¬
f£¨n+1£©£¾f£¨n£©£¬
¡àf£¨n£©ÊÇÔöº¯Êý
µ±n¡Ý2ʱ£¬
f(n)min=f(2)=
19
20
£¬
m
20
£¼
19
20
£¬
¹Êm£¼19£¬
ÕûÊýmµÄ×î´óֵΪ18£®
µãÆÀ£º±¾Ì⿼²éÊýÁеÄÐÔÖʺÍÓ¦Ó㬽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬×¢Ò⹫ʽµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø