ÌâÄ¿ÄÚÈÝ
ÒÑÖªÊýÁÐ{an}Âú×㣺a1=1£¬an+1=
|
£¨1£©ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©Éècn=(22n-1-1)bn2£¬ÊýÁÐ{cn}µÄÇ°nÏîºÍΪ{sn}£¬Èô¶ÔÈÎÒân¡ÊN*£¬²»µÈʽ¦Ë¡Ý1+Snºã³ÉÁ¢£¬ÇóʵÊý¦ËÈ¡Öµ·¶Î§£»
£¨3£©Éèxn=
2n |
n |
m |
20 |
·ÖÎö£º£¨1£©ÓÉbn=a2n£¬Öªbn+1=a2n+1+1=
+(2n+1)-1=
=
bn£¬ÓÉa1=1£¬Öªb1=a2=
a1=
£¬ÓÉ´ËÄܵ¼³öÊýÁÐ{bn}µÄͨÏʽ£®
£¨2£©ÓÉcn=(22n-1-1)(
)n2=(
)(n-1)2-(
)n2£¬ÖªSn=c1+c2++cn=1-(
)n2£¬Sn=c1+c2+¡+cn=1-(
)n2£¬Èô¶ÔÓÚÈÎÒân¡ÊN*£¬²»µÈʽ¦Ë¡Ý1+Snºã³ÉÁ¢£¬ÓÉ´ËÄÜÇó³ö¦ËµÄÈ¡Öµ·¶Î§£®
£¨3£©ÓÉxn=
bn=
£¬ÖªT3n-Tn=
+
++
£¬Áîf(n)=
+
++
£¬Ôòf(n+1)-f(n)=
+
+
-
£¾
+
-
=0£¬ËùÒÔf£¨n£©ÊÇÔöº¯Êý£¬ÓÉ´ËÄܵ¼³öÕûÊýmµÄ×î´óֵΪ18£®
a2n+1 |
2 |
a2n |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
£¨2£©ÓÉcn=(22n-1-1)(
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
£¨3£©ÓÉxn=
2n |
n |
1 |
n |
1 |
n+1 |
1 |
n+2 |
1 |
3n |
1 |
n+1 |
1 |
n+2 |
1 |
3n |
1 |
3n+1 |
1 |
3n+2 |
1 |
3n+3 |
1 |
n+1 |
1 |
3n+3 |
1 |
3n+3 |
2 |
3n+3 |
½â´ð£º½â£º£¨1£©bn=a2n£¬
bn+1=a2n+1+1=
+(2n+1)-1=
=
bn£¬
a1=1£¬
¡àb1=a2=
a1=
£¬
¡à{bn}ÊÇÊ×ÏîºÍ¹«±È¶¼Îª
µÄµÈ±ÈÊýÁУ¬
¹Êbn=(
)n£¨5·Ö£©
£¨2£©cn=(22n-1-1)(
)n2=(
)(n-1)2-(
)n2£¬
Sn=c1+c2+¡+cn=1-(
)n2£¬
Èô¶ÔÓÚÈÎÒân¡ÊN*£¬
²»µÈʽ¦Ë¡Ý1+Snºã³ÉÁ¢£¬
Ôò¦Ë¡Ý2£¬
¹Ê¦ËµÄÈ¡Öµ·¶Î§ÊÇ[2£¬+¡Þ£©£®£¨9·Ö£©
£¨3£©xn=
bn=
£¬
T3n-Tn=
+
+¡+
£¬
Áîf£¨n£©=
+
+¡+
£¬
Ôòf(n+1)-f(n)=
+
+
-
£¾
+
-
=0£¬
f£¨n+1£©£¾f£¨n£©£¬
¡àf£¨n£©ÊÇÔöº¯Êý
µ±n¡Ý2ʱ£¬
f(n)min=f(2)=
£¬
£¼
£¬
¹Êm£¼19£¬
ÕûÊýmµÄ×î´óֵΪ18£®
bn+1=a2n+1+1=
a2n+1 |
2 |
a2n |
2 |
1 |
2 |
a1=1£¬
¡àb1=a2=
1 |
2 |
1 |
2 |
¡à{bn}ÊÇÊ×ÏîºÍ¹«±È¶¼Îª
1 |
2 |
¹Êbn=(
1 |
2 |
£¨2£©cn=(22n-1-1)(
1 |
2 |
1 |
2 |
1 |
2 |
Sn=c1+c2+¡+cn=1-(
1 |
2 |
Èô¶ÔÓÚÈÎÒân¡ÊN*£¬
²»µÈʽ¦Ë¡Ý1+Snºã³ÉÁ¢£¬
Ôò¦Ë¡Ý2£¬
¹Ê¦ËµÄÈ¡Öµ·¶Î§ÊÇ[2£¬+¡Þ£©£®£¨9·Ö£©
£¨3£©xn=
2n |
n |
1 |
n |
T3n-Tn=
1 |
n+1 |
1 |
n+2 |
1 |
3n |
Áîf£¨n£©=
1 |
n+1 |
1 |
n+2 |
1 |
3n |
Ôòf(n+1)-f(n)=
1 |
3n+1 |
1 |
3n+2 |
1 |
3n+3 |
1 |
n+1 |
£¾
1 |
3n+3 |
1 |
3n+3 |
2 |
3n+3 |
f£¨n+1£©£¾f£¨n£©£¬
¡àf£¨n£©ÊÇÔöº¯Êý
µ±n¡Ý2ʱ£¬
f(n)min=f(2)=
19 |
20 |
m |
20 |
19 |
20 |
¹Êm£¼19£¬
ÕûÊýmµÄ×î´óֵΪ18£®
µãÆÀ£º±¾Ì⿼²éÊýÁеÄÐÔÖʺÍÓ¦Ó㬽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬×¢Ò⹫ʽµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿