题目内容
已知数列{an}满足an+1=|an-1|(n∈N*)(1)若a1=
5 | 4 |
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)
分析:(1)把a1=
代入an+1=|an-1|分别求得a2,a3,a4,推断出n≥2数列中偶数项为
,奇数项为
,进而推断出数列的通项公式.
(2)根据a1=a可分别求得a2和a3,同理可求得ak+1,ak+2,ak+3,ak+4进而求得a3k和a3k-1最后相加,利用等差数列的求和公式求得答案.
5 |
4 |
1 |
4 |
3 |
4 |
(2)根据a1=a可分别求得a2和a3,同理可求得ak+1,ak+2,ak+3,ak+4进而求得a3k和a3k-1最后相加,利用等差数列的求和公式求得答案.
解答:解:(1)a1=
,a2=
,a3=
,a4=
,
∴a1=
,n≥2时,an=
,其中k∈N*
(2)当a1=a∈(k,k+1),(k∈N*)时,
易知a2=a-1,
a3=a-2ak=a-(k-1);
ak+1=a-k∈(0,1);
ak+2=1-ak+1=k+1-a;
ak+3=1-ak+2=a-k;
ak+4=1-ak+3=k+1-a
a3k-1=a-k,
a3k=k+1-a;
S3k=a1+a2+…+ak+ak+1+ak+2+ak+3+ak+4+…+a3k-1+a3k
=a+(a-1)+(a-2)+…+a-(k-1)+k
=ka+k-
(k-1)
=-
+k(a+
)
5 |
4 |
1 |
4 |
3 |
4 |
1 |
4 |
∴a1=
5 |
4 |
|
(2)当a1=a∈(k,k+1),(k∈N*)时,
易知a2=a-1,
a3=a-2ak=a-(k-1);
ak+1=a-k∈(0,1);
ak+2=1-ak+1=k+1-a;
ak+3=1-ak+2=a-k;
ak+4=1-ak+3=k+1-a
a3k-1=a-k,
a3k=k+1-a;
S3k=a1+a2+…+ak+ak+1+ak+2+ak+3+ak+4+…+a3k-1+a3k
=a+(a-1)+(a-2)+…+a-(k-1)+k
=ka+k-
1+k-1 |
2 |
=-
k2 |
2 |
3 |
2 |
点评:本题主要考查了数列的递推式.考查了学生推理分析和基本的运算能力.
练习册系列答案
相关题目