题目内容
【题目】已知函数f(x)= ,若有三个不同的实数a,b,c,使得f(a)=f(b)=f(c),则a+b+c的取值范围为( )
A.(2π,2017π)
B.(2π,2018π)
C.( , )
D.(π,2017π)
【答案】B
【解析】解:当x∈[0,π]时,f(x)=cos(x﹣ )=sinx, ∴f(x)在[0,π]上关于x= 对称,且fmax(x)=1,
又当x∈(π,+∞)时,f(x)=log2017 是增函数,
作出y=f(x)的函数图象如图所示:
令log2017 =1得x=2017π,
∵f(a)=f(b)=f(c),
∴a+b=π,c∈(π,2017π),
∴a+b+c=π+c∈(2π,2018π).
故选:B.
【题目】随着南宁三中集团化发展,南宁三中青三校区2018年被清华北大录取23人,广西领先,一本率连年攀升,南宁三中青山校区2014年至2018年一本率如下表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
时间代号 | 1 | 2 | 3 | 4 | 5 |
一本率 | 0.7152 | 0.7605 | 0.7760 | 0.8517 | 0.9015 |
(1)求关于的回归方程 (精确到0.0001);
(2)用所求回归方程预测南宁三中青山校区2019年高考一本录取率.(精确到0.0001).
附:回归方程中
参考数据:
【题目】理科竞赛小组有9名女生、12名男生,从中随机抽取一个容量为7的样本进行分析.
(Ⅰ)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可)
(Ⅱ)如果随机抽取的7名同学的物理、化学成绩(单位:分)对应如表:
学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
物理成绩 | 65 | 70 | 75 | 81 | 85 | 87 | 93 |
化学成绩 | 72 | 68 | 80 | 85 | 90 | 86 | 91 |
规定85分以上(包括85份)为优秀,从这7名同学中再抽取3名同学,记这3名同学中物理和化学成绩均为优秀的人数为X,求随机变量X的分布列和数学期望.
【题目】2017年春晚分会场之一是凉山西昌,电视播出后,通过网络对凉山分会场的表演进行了调查.调查分三类人群进行,参加了网络调查的观众们的看法情况如下:
观众对凉山分会场表演的看法 | 非常好 | 好 |
中国人且非四川(人数比例) | ||
四川人(非凉山)(人数比例) | ||
凉山人(人数比例) |
(1)从这三类人群中各选一个人,求恰好有2人认为“非常好”的概率(用比例作为相应概率);
(2)若在四川人(非凉山)群中按所持态度分层抽样,抽取9人,在这9人中任意选取3人,认为“非常好”的人数记为ξ,求ξ的分布列和数学期望.