题目内容

如图,四边形ABCD是边长为2的正方形,直线l与平面ABCD平行,EFl上的两个不同点,且EAEDFBFC.E′和F′是平面ABCD内的两点,EE′和FF′都与平面ABCD垂直.

(1)证明:直线EF′垂直且平分线段AD
(2)若∠EAD=∠EAB=60 °,EF=2.求多面体ABCDEF的体积.
(1)见解析(2)2.
(1)证明 ∵EAEDEE′⊥平面ABCD
EDEA,∴点E′在线段AD的垂直平分线上.
同理,点F′在线段BC的垂直平分线上.
又四边形ABCD是正方形,
∴线段BC的垂直平分线也就是线段AD的垂直平分线,即点E′、F′都在线段AD的垂直平分线上.
∴直线EF′垂直且平分线段AD.
(2)解 如图,连接EBEC,由题意知多面体ABCDEF可分割成正四棱锥E­ABCD和正四面体E­BCF两部分.设AD的中点为M,在Rt△MEE′中,由于ME′=1,ME,∴EE′=.

VE­ABCD·S正方形ABCD·EE′=×22×.
VE­BCFVC­BEFVC­BEAVE­ABCSABC·EE′=××22×
∴多面体ABCDEF的体积为VE­ABCDVE­BCF=2.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网