题目内容
如图,四边形ABCD是边长为2的正方形,直线l与平面ABCD平行,E和F是l上的两个不同点,且EA=ED,FB=FC.E′和F′是平面ABCD内的两点,EE′和FF′都与平面ABCD垂直.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240348228874770.jpg)
(1)证明:直线E′F′垂直且平分线段AD;
(2)若∠EAD=∠EAB=60 °,EF=2.求多面体ABCDEF的体积.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240348228874770.jpg)
(1)证明:直线E′F′垂直且平分线段AD;
(2)若∠EAD=∠EAB=60 °,EF=2.求多面体ABCDEF的体积.
(1)见解析(2)2
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034822903344.png)
(1)证明 ∵EA=ED且EE′⊥平面ABCD,
∴E′D=E′A,∴点E′在线段AD的垂直平分线上.
同理,点F′在线段BC的垂直平分线上.
又四边形ABCD是正方形,
∴线段BC的垂直平分线也就是线段AD的垂直平分线,即点E′、F′都在线段AD的垂直平分线上.
∴直线E′F′垂直且平分线段AD.
(2)解 如图,连接EB、EC,由题意知多面体ABCDEF可分割成正四棱锥EABCD和正四面体EBCF两部分.设AD的中点为M,在Rt△MEE′中,由于ME′=1,ME=
,∴EE′=
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240348229345078.jpg)
∴VEABCD=
·S正方形ABCD·EE′=
×22×
=
.
又VEBCF=VCBEF=VCBEA=VEABC=
S△ABC·EE′=
×
×22×
=
,
∴多面体ABCDEF的体积为VEABCD+VEBCF=2
.
∴E′D=E′A,∴点E′在线段AD的垂直平分线上.
同理,点F′在线段BC的垂直平分线上.
又四边形ABCD是正方形,
∴线段BC的垂直平分线也就是线段AD的垂直平分线,即点E′、F′都在线段AD的垂直平分线上.
∴直线E′F′垂直且平分线段AD.
(2)解 如图,连接EB、EC,由题意知多面体ABCDEF可分割成正四棱锥EABCD和正四面体EBCF两部分.设AD的中点为M,在Rt△MEE′中,由于ME′=1,ME=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034822918344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034822903344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240348229345078.jpg)
∴VEABCD=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034822949327.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034822949327.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034822903344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034822981521.png)
又VEBCF=VCBEF=VCBEA=VEABC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034822949327.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034822949327.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034823027338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034822903344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034823059497.png)
∴多面体ABCDEF的体积为VEABCD+VEBCF=2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034822903344.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目