题目内容
在数列中,,且.
(Ⅰ) 求,猜想的表达式,并加以证明;
(Ⅱ) 设,求证:对任意的自然数,都有;
(1),, 利用数学归纳法加以证明;(2)---(9分)
所以所以只需要证明
(显然成立)
解析试题分析:(1)容易求得:,----------------------(2分)
故可以猜想, 下面利用数学归纳法加以证明:
显然当时,结论成立,-----------------(3分)
假设当;时(也可以),结论也成立,即
,--------------------------(4分)
那么当时,由题设与归纳假设可知:
(6分)
即当时,结论也成立,综上,对,成立。 (7分)
(2)---(9分)
所以
------(11分)
所以只需要证明
(显然成立)
所以对任意的自然数,都有 (14分)
考点:本题考查了数学归纳法的运用
点评:(1)用数学归纳法证明问题时首先要验证时成立,注意不一定为1;
(2)在第二步中,关键是要正确合理地运用归纳假设,尤其要弄清由k到k+1时命题的变化
练习册系列答案
相关题目