ÌâÄ¿ÄÚÈÝ
1£®ÒÑÖª{an}ÊǸ÷ÏîΪÕýÊýµÄµÈ±ÈÊýÁУ¬SnΪǰnÏîºÍ£¬Âú×ã$\frac{2}{{a}_{3}}$+$\frac{1}{{a}_{4}}$=$\frac{1}{{a}_{5}}$£¬a3•S3=$\frac{7}{64}$£®£¨¢ñ£©Çóan£»
£¨¢ò£©ÉèÊýÁÐ{an}µÄÇ°nÏî»ýΪTn£¬ÇóËùÓеÄÕýÕûÊýk£¬Ê¹µÃ¶ÔÈÎÒâµÄn¡ÊN*£¬²»µÈʽSn+k+$\frac{{T}_{n}}{4}$£¼1ºã³ÉÁ¢£®
·ÖÎö £¨¢ñ£©¸ù¾ÝµÈ±ÈÊýÁеÄͨÏʽÒÔ¼°Ç°nÏîºÍ¹«Ê½£¬½¨Á¢·½³Ì¹Øϵ¼´¿ÉÇóan£»
£¨¢ò£©ÊýÁÐ{an}µÄÇ°nÏî»ýΪTn£¬ºÍÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬½â²»µÈʽ¼´¿É£®
½â´ð ½â£º£¨¢ñ£©ÉèµÈ±ÈÊýÁÐ{an}µÄÊ×ÏîΪa1£¬a1£¾0£¬¹«±ÈΪq£¬£¨q£¾0£©£¬
ÔòÓÉÌõ¼þµÃ$\left\{\begin{array}{l}{{a}_{1}{q}^{2}•\frac{{a}_{1}£¨1-{q}^{3}£©}{1-q}=\frac{7}{64}}\\{\frac{2}{{a}_{1}{q}^{2}}+\frac{1}{{a}_{1}{q}^{3}}=\frac{1}{{a}_{1}{q}^{4}}}\end{array}\right.$£¬--------------£¨4·Ö£©
½âµÃa1=q=$\frac{1}{2}$£¬Ôòan=$\frac{1}{{2}^{n}}$--------------£¨7·Ö£©
£¨¢ò£©ÓÉ£¨¢ñ£©ÖªSn=$\frac{{a}_{1}£¨1-{q}^{n}£©}{1-q}$=1-$\frac{1}{{2}^{n}}$£¬
ÓÖTn=$£¨\frac{1}{2}£©^{\frac{n£¨n+1£©}{2}}$--------------£¨10·Ö£©
Èô´æÔÚÕýÕûÊýk£¬Ê¹µÃ²»µÈʽSn+k+$\frac{{T}_{n}}{4}$£¼1ºã¶ÔÈÎÒâµÄn¡ÊN*¶¼³ÉÁ¢£¬
Ôò1-$\frac{1}{{2}^{n+k}}$+£¨$\frac{1}{2}$£©${\;}^{\frac{n£¨n+1£©}{2}+2}$£¼1£¬
¼´k£¼$\frac{n£¨n-1£©}{2}$+2£¬ÕýÕûÊýkÖ»ÓÐÈ¡k=1--------£¨15·Ö£©
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÈ±ÈÊýÁÐÇóºÍÒÔ¼°Í¨ÏʽµÄÓ¦Ó㬸ù¾ÝÌõ¼þ½¨Á¢·½³Ì¹ØϵÇó³öÊýÁеÄͨÏʽÒÔ¼°Ç°nÏîºÍÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®
A£® | 0 | B£® | $\frac{1}{6}$ | C£® | 0»ò$\frac{1}{6}$ | D£® | 0»ò$\frac{1}{4}$ |
A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
C£® | ³äÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÓÖ²»±ØÒªÌõ¼þ |
A£® | 6 | B£® | 7 | C£® | 8 | D£® | 9 |
A£® | £¨-¡Þ£¬-1] | B£® | [2£¬+¡Þ£© | C£® | £¨-¡Þ£¬$\frac{1}{2}$£© | D£® | £¨$\frac{1}{2}$£¬+¡Þ£© |