题目内容
函数的单调递增区间是( )
A. | B. | C. | D. |
D
解析试题分析:先确定函数的定义域,再考虑内外函数的单调性,即可得到结论.
要使有意义则即
所以定义域为
因为在上是减函数,
又因为在上是减函数
由复合函数的单调性可知单调递增区间是故选D
考点:复合函数的单调性.
练习册系列答案
相关题目
若是上的减函数,且的图象过点和,则不等式的解集是( )
A. | B. | C. | D. |
已知函数的三个实数根分别为,则的范围是( )
A. | B. | C. | D. |
下列函数中既是奇函数,又是在上为增函数的是
A. | B. | C. | D. |
下列函数中既是奇函数,又是在上为增函数的是
A. | B. | C. | D. |
若函数在区间(1,4)内为减函数,在区间(6,+∞)内为增函数,则实数a的取值范围是 ( )
A.a≤2 | B.5≤a≤7 | C.4≤a≤6 | D.a≤5或a≥7 |