搜索
题目内容
设抛物线x
2
=4y与椭圆
+
=1交于点E,F,则△OEF(O为坐标原点)的面积为( )
A.3
B.4
C.6
D.12
试题答案
相关练习册答案
C
由
解得
.结合图形的对称性可得,△OEF的面积为
×4
×3=6
.
练习册系列答案
名校联盟金考卷期末大冲刺系列答案
暑假生活湖南少年儿童出版社系列答案
暑假小小练系列答案
暑假作业新世界出版社系列答案
创新成功学习快乐暑假云南科技出版社系列答案
暑假生活安徽教育出版社系列答案
假期生活智趣暑假系列答案
假期园地复习计划系列答案
学苑新报暑假专刊系列答案
暑假乐园广东人民出版社系列答案
相关题目
设椭圆
的焦点在
轴上.
(1)若椭圆
的焦距为1,求椭圆
的方程;
(2)设
分别是椭圆的左、右焦点,
为椭圆
上的第一象限内的点,直线
交
轴与点
,并且
,证明:当
变化时,点
在某定直线上.
已知椭圆C:
+
=1(a>b>0)的离心率为
,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
.
(1)求椭圆C的方程;
(2)已知动直线y=k(x+1)与椭圆C相交于A,B两点.
①若线段AB中点的横坐标为-
,求斜率k的值;
②已知点M(-
,0),求证:
·
为定值.
给定椭圆
,称圆心在坐标原点O,半径为
的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是
.
(1)若椭圆C上一动点
满足
,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点
作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为
,求P点的坐标;
(3)已知
,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点
的直线的最短距离
.若存在,求出a,b的值;若不存在,请说明理由.
(本小题满分12分,(1)小问4分,(2)小问8分)已知
为椭圆
上两动点,
分别为其左右焦点,直线
过点
,且不垂直于
轴,
的周长为
,且椭圆的短轴长为
.
(1)求椭圆
的标准方程;
(2)已知点
为椭圆
的左端点,连接
并延长交直线
于点
.求证:直线
过定点.
如图,设P是圆x
2
+y
2
=25上的动点,点D是P在x轴上的射影,M为PD上一点,且|MD|=
4
5
|PD|
(Ⅰ)当P在圆上运动时,求点M的轨迹C的方程
(Ⅱ)求过点(3,0)且斜率
4
5
的直线被C所截线段的长度.
椭圆
的离心率为( )
A.
B.
C.
D.
若直线mx+ny=4与⊙O:x
2
+y
2
=4没有交点,则过点P(m,n)的直线与椭圆
+
=1的交点个数是( )
A.至多为1
B.2
C.1
D.0
已知P为椭圆
+
=1上的一点,M,N分别为圆(x+3)
2
+y
2
=1和圆(x-3)
2
+y
2
=4上的点,则|PM|+|PN|的最小值为________.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总