题目内容
3.已知正数x,y满足x+2y=1,求$\frac{1}{x+1}$+$\frac{1}{x+3y}$的最小值.分析 由题意消元并变形可得$\frac{1}{x+1}$+$\frac{1}{x+3y}$=$\frac{1}{2}$•$\frac{1}{-(3-y)-\frac{8}{3-y}+6}$,由基本不等式可得(3-y)+$\frac{8}{3-y}$≥4$\sqrt{2}$,再由不等式的性质可得答案.
解答 解:∵正数x,y满足x+2y=1,∴x=1-2y>0,
解得y<$\frac{1}{2}$,∴0<y<$\frac{1}{2}$,
∴$\frac{1}{x+1}$+$\frac{1}{x+3y}$=$\frac{1}{1-2y+1}$+$\frac{1}{1-2y+3y}$
=$\frac{1}{2(1-y)}$+$\frac{1}{1+y}$=$\frac{1+y+2-2y}{2(1-{y}^{2})}$=$\frac{3-y}{2(1-{y}^{2})}$
=$\frac{1}{2}$•$\frac{3-y}{-(3-y)^{2}+6(3-y)-8}$
=$\frac{1}{2}$•$\frac{1}{-(3-y)-\frac{8}{3-y}+6}$,
∵(3-y)+$\frac{8}{3-y}$≥2$\sqrt{(3-y)•\frac{8}{3-y}}$=4$\sqrt{2}$,
∴-(3-y)-$\frac{8}{3-y}$+6≤6-4$\sqrt{2}$,
∴$\frac{1}{2}$•$\frac{1}{-(3-y)-\frac{8}{3-y}+6}$≥$\frac{1}{2}$•$\frac{1}{6-4\sqrt{2}}$=$\frac{3+2\sqrt{2}}{4}$
当且仅当(3-y)=$\frac{8}{3-y}$即y=3-2$\sqrt{2}$时上式取最小值$\frac{3+2\sqrt{2}}{4}$
点评 本题考查基本不等式求最值,消元并变形为可用基本不等式的形式是解决问题的关键,属中档题.
A. | 10 | B. | 14 | C. | 13 | D. | 100 |
A. | ρcosθ=$\sqrt{3}$ | B. | ρcosθ=-$\sqrt{3}$ | C. | ρsinθ=1 | D. | ρsinθ=-1 |