题目内容
【题目】已知函数,,
(1)若函数f(x)有两个零点,求实数a的取值范围;
(2)若a=3,且对任意的x1∈[-1,2],总存在,使g(x1)-f(x2)=0成立,求实数m的取值范围.
【答案】(1)
(2)
【解析】
(1)令t=x2,则t∈[1,3],记,问题转化为函数y=h(t)与y=a有两个交点,利用函数的导数判断函数的单调性求解函数的最小值然后求解实数a的范围.
(2)由(1)知f(x)∈[1,2],记A=[1,2],通过当m=0时,当m>0时,当m<0时,分类求实数m的取值范围,推出结果即可.
(1)由题意,函数,,
令t=x2,则t∈[1,3],则,
要使得函数f(x)有两个零点,即函数y=h(t)与y=a有两个交点,
因为,当t∈(1,2)时,<0;当t∈(2,3)时,>0,
所以函数h(t)在(1,2)递减,(2,3)递增,
从而h(t)min=h(2)=4,,h(1)=5,
由图象可得,当时,y=h(t)与y=a有两个交点,
所以函数f(x)有两个零点时实数a的范围为:.
(2)由(1)知f(x)∈[1,2],记A=[1,2],
当m=0时,,显然成立;
当m>0时,在[-1,2]上单调递增,所以,
记,
由对任意的,总存在,使成立,可得,
所以且,解得,
当m<0时,在[-1,2]上单调递减,所以,
所以且,截得,
综上,所求实数m的取值范围为.
练习册系列答案
相关题目