题目内容
5.某种产品的广告费用支出X与销售额之间有如下的对应数据:x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(2)求回归直线方程;
(3)据此估计广告费用为10销售收入y的值.
参考公式:最小二乘法得$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{{x}^{2}}}}\\{\widehat{a}=\overline{y}-\widehat{b}\overline{x}}\end{array}\right.$其中:$\widehat{b}$是回归方程的斜率,$\widehat{a}$是截距.
分析 (1)根据表中所给的五对数据,得到五个有序数对,在平面直角坐标系中画出点,得到散点图.
(2)先做出横标和纵标的平均数,得到这组数据的样本中心点,利用最小二乘法做出线性回归方程的系数,再求出a的值,即可得到线性回归方程.
(3)把所给的x的值代入线性回归方程,求出y的值,这里的y的值是一个预报值,或者说是一个估计值.
解答 解:(1)根据表中所给的五对数据,得到五个有序数对,在平面直角坐标系中画出点,得到散点图.
(2)∵$\overline{x}$=$\frac{1}{5}$×(2+4+5+6+8)=5,$\overline{y}$=$\frac{1}{5}$×(30+40+60+50+70)=50
∴b=$\frac{2×30+4×40+5×60+6×50+8×70-5×5×50}{4+16+25+36+64-5×25}$=6.5
∴a=50-6.5×5=17.5
∴回归直线方程为y=6.5x+17.5
(3)当x=10时,预报y的值为y=10×6.5+17.5=82.5.
点评 本题考查线性回归方程的求法和应用,本题解题的关键是看出这组变量是线性相关的,进而正确运算求出线性回归方程的系数,本题是一个基础题.
练习册系列答案
相关题目
15.将函数f(x)=sin2x的图象向左平移$\frac{π}{12}$个单位,得到函数g(x)=sin(2x+φ)(0<φ<$\frac{π}{2}$)的图象,则φ等于$\frac{π}{6}$.
10.命题p:若随机事件A,B是对立事件,则A,B一定是互斥事件,则¬P是( )
A. | 若随机事件A,B是对立事件,则A,B一定不是互斥事件 | |
B. | 若随机事件A,B不是对立事件,则A,B一定不是互斥事件 | |
C. | 存在随机事件A,B是对立事件,并且A,B不是互斥事件 | |
D. | 存在随机事件A,B不是对立事件,并且A,B是互斥事件 |