题目内容

已知a,b,c都是正实数,求证(1)
a2
b
≥2a-b,(2)
a2
b
+
b2
c
+
c2
a
≥a+b+c.
分析:(1)利用分析法证明,由于a,b,c都是正实数,所以最终只需要证明:(a-b)2≥0;
(2)根据不等式特点,先利用基本不等式证明b+
a2
b
≥ 2a
c+
b2
c
≥ 2b,a+
c2
a
≥ 2c
,从而得证.
解答:证明:(1)要证
a2
b
≥2a-b

即证:a2≥2ab-b2
即证:(a-b)2≥0
显然成立,故得证;
(2)∵a,b,c都是正实数,
b+
a2
b
≥ 2a
c+
b2
c
≥ 2b,a+
c2
a
≥ 2c

相加,化简得
a2
b
+
b2
c
+
c2
a
≥a+b+c.
点评:本题以证明不等式为载体,考查分析法,考查基本不等式的运用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网