题目内容
选修4-5:不等式选讲(Ⅰ)已知x,y都是正实数,求证:x3+y3≥x2y+xy2;
(Ⅱ)已知a,b,c都是正实数,求证:a3+b3+c3≥
1 | 3 |
分析:(Ⅰ)作差因式分解得(x-y)2(x+y),根据题意可得(x-y)2(x+y)≥0,从而问题得证;
(Ⅱ)由(Ⅰ)知:a3+b3≥a2b+ab2;b3+c3≥b2c+bc2;c3+a3≥c2a+ca2;上述三式相加即可证得.
(Ⅱ)由(Ⅰ)知:a3+b3≥a2b+ab2;b3+c3≥b2c+bc2;c3+a3≥c2a+ca2;上述三式相加即可证得.
解答:证明:(Ⅰ)∵(x3+y3)-(x2y+xy2)=x2(x-y)+y2(y-x)=(x-y)(x2-y2)=(x-y)2(x+y),
又∵x,y∈R+,∴(x-y)2≥0,,x+y>0,∴(x-y)2(x+y)≥0,
∴x3+y3≥x2y+xy2.…(5分)
(Ⅱ)∵a,b,c∈R+,由(Ⅰ)知:a3+b3≥a2b+ab2;b3+c3≥b2c+bc2;c3+a3≥c2a+ca2;
将上述三式相加得:2(a3+b3+c3)≥(a2b+ab2)+(b2c+bc2)+(c2a+ca2),
∴a3+b3+c3≥
(a2+b2+c2)(a+b+c).…(10分)
又∵x,y∈R+,∴(x-y)2≥0,,x+y>0,∴(x-y)2(x+y)≥0,
∴x3+y3≥x2y+xy2.…(5分)
(Ⅱ)∵a,b,c∈R+,由(Ⅰ)知:a3+b3≥a2b+ab2;b3+c3≥b2c+bc2;c3+a3≥c2a+ca2;
将上述三式相加得:2(a3+b3+c3)≥(a2b+ab2)+(b2c+bc2)+(c2a+ca2),
|
∴a3+b3+c3≥
1 |
3 |
点评:本题考查不等式的证明,利用了综合法.综合法由因导果,作差时应注意因式分解,同时与0 比较.
练习册系列答案
相关题目