题目内容
【题目】在△ABC中,角A,B,C的对边分别是a、b、c,已知向量 =(cosA,cosB), =(a,2c﹣b),且 ∥ .
(1)求角A的大小;
(2)若a=4,求△ABC面积的最大值.
【答案】
(1)解:∵向量 =(cosA,cos B), =(a,2c﹣b),且 ∥ ,
∴acosB﹣(2c﹣b)cosA=0,
利用正弦定理化简得:sinAcosB﹣(2sinC﹣sinB)cosA=0,
∴sinAcosB+cosAsinB﹣2sinCcosA=0,即sin(A+B)=sinC=2sinCcosA,
∵sinC≠0,∴cosA= ,
又0<A<π,则A= ;
(2)解:由余弦定理a2=b2+c2﹣2bccosA,得:16=b2+c2﹣bc≥bc,即bc≤16,
当且仅当b=c=4时,上式取等号,
∴S△ABC= bcsinA≤4 ,
则△ABC面积的最大值为4 .
【解析】(1)由两向量的坐标及两向量平行,利用平面向量的数量积运算法则列出关系式,再利用正弦定理化简,整理后再利用两角和与差的正弦函数公式化简,根据sinC不为0,求出cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数;(2)由a与cosA的值,利用余弦定理列出关系式,整理后利用基本不等式求出bc的最大值,再由bc的最大值与sinA的值即可得到三角形ABC面积的最大值.
【考点精析】根据题目的已知条件,利用余弦定理的定义的相关知识可以得到问题的答案,需要掌握余弦定理:;;.
【题目】2013年,首都北京经历了59年来雾霾天气最多的一个月.经气象局统计,北京市从1月1日至1月30日的30天里有26天出现雾霾天气,《环境空气质量指数(AQI)技术规定(试行)》将空气质量指数分为六级,其中,中度污染(四级)指数为151~200;重度污染(五级)指数为201~300;严重污染(六级)指数大于300.下面表1是某观测点记录的4天里AQI指数M与当天的空气水平可见度y(千米)的情况,表2是某气象观测点记录的北京1月1日到1月30日AQI指数频数的统计结果.
表1
AQI指数M | 900 | 700 | 300 | 100 |
空气可见度y/千米 | 0.5 | 3.5 | 6.5 | 9.5 |
表2
AQI指数 | [0,200] | (200,400] | (400,600] | (600,800] | (800,1000] |
频数 | 3 | 6 | 12 | 6 | 3 |
(1)设变量x=,根据表1的数据,求出y关于x的线性回归方程;
(2)根据表2估计这30天AQI指数的平均值.