题目内容
1.等差数列{an}中,已知a10=30,a20=50,Sn=242,求n.分析 根据等差数列的通项公式建立方程组关系求出首项和公差即可得到结论.
解答 解:∵a10=30,a20=50,
∴$\left\{\begin{array}{l}{{a}_{1}+9d=30}\\{{a}_{1}+19d=50}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=12}\\{d=2}\end{array}\right.$,
则由Sn=na1+$\frac{n(n-1)}{2}d$=12n+n2-n=242,
即n2+11n-242=0,
解得n=-22(舍)或n=11.
点评 本题主要考查等差数列的通项公式以及前n项和公式的应用,建立方程组求出首项和公差是解决本题的关键.
练习册系列答案
相关题目
12.已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P向圆引切线PQ,且满足|PQ|=|PA|,若以P为圆心所作的圆P与圆O有公共点,则圆P半径的最小值为( )
A. | $\frac{3\sqrt{5}}{5}$-1 | B. | 1 | C. | 2 | D. | $\frac{3\sqrt{5}}{5}$ |
6.若${({2m+1})^{\frac{1}{2}}}>{({{m^2}+m-1})^{\frac{1}{2}}}$,则实数m的取值范围是( )
A. | $[{\frac{{\sqrt{5}-1}}{2},2})$ | B. | $[{\frac{{\sqrt{5}-1}}{2},+∞})$ | C. | (-1,2) | D. | $({-∞,\frac{{-\sqrt{5}-1}}{2}}]$ |
13.设变量x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{x+y-4≤0}\\{x-3y+4≤0}\end{array}\right.$,则目标函数Z=x-y的最大值为( )
A. | 4 | B. | 1 | C. | 0 | D. | -$\frac{4}{3}$ |
10.若动点A,B分别在直线l1:x+2y-1=0和l2:2x+4y+5=0上移动,则|$\overrightarrow{OA}$+$\overrightarrow{OB}$|(O为原点)的最小值是( )
A. | $\frac{3\sqrt{5}}{10}$ | B. | $\frac{6\sqrt{5}}{5}$ | C. | $\frac{3\sqrt{5}}{20}$ | D. | $\frac{7\sqrt{5}}{10}$ |